

A Model for Forecasting Data Centre Infrastructure Costs

CHEP 2015 @ Okinawa

Renaud Vernet - CCIN2P3

Context

- Large computing resource requests to come
 - LHC, Astroparticles...
- Tight funding situation

- Need of rationalization
 - What of data centre infrastructure ?

- Recurrent kind of questions (as a site)
 - how much does and will an experiment computing cost me?

Aim of this talk

- How to estimate hosting cost in terms of infrastructure ?
 - Hardware + Power
- The trends
 - Resource cost
 - Power consumption
- → Model yearly resource investment
- → Quantify and give estimates for the future
 - Assuming todays technos trends
 - No major (r)evolution in the next years
- Results for CC-IN2P3

Hardware

- Evolution of unitary cost with time
 - including rack, switch
 - €/HS06 or €/TB

- One thing to consider
 - Hardware has a life time, you need to renew it
 - Makes things complicated, let's try to make it simple

- Hardware Cost
 - Related to procurement cost, but
 - **yearly** basis

renaud.vernet@cc.in2p3.fr

includes renewal

year

renaud.vernet@cc.in2p3.fr

Power Price & consumption

Evolution since 2004 (France)

- Power price evolution hard to foresee
- Should increase by 5-10 % / year

Power consumption per service

- Measurements on PDUs
- Grouping by service
- Estimate of power consumption evolution with time
 - Per service (CPU, Disk, Tape, Other)
 - Including PUE
 - ⇔ hardware consumption + cooling

Unitary Power Consumption

And... finally... the cost?

So now the ingredients to answer the question :

Investment (t) = Capacity (t) * Cost (t)

Example 1: LHC

Assuming 20 % growth CPU
15 % growth Disk
15 % growth Tape
(see WLCG computing model update)

Example 1: LHC

Will we arrive at a point where power costs more than hardware?

Example 1: LHC

Example 3

- Assuming flat budget
- What growth should we expect ?

	CPU	Disk	Tape
Cost model @ ccin2p3	25 %	18 %	38 %
WLCG computing model update	20 %	15 %	15 %

This is for CC-IN2P3
May change from site-to-site

- power price evolution
- tape storage system cost

Disagreement on Tape storage potential growth

Summary and remarks

- A model that permits several things
 - Understand hardware and power costs of a data centre
 - Estimate funding needed for the future experiments
 - Tell me how much you need, I'll tell you how much it will cost

- Caveats to remember
 - Model smoothes things
 - Beware of year-to-year fluctuations in real life
 - Does not allow for major technology (r)evolutions

有難うございました

HPSS T10K tapes

Hypothesis:

- Constant investment over time
- Resource cost drops exponentially by « r % » per year (-CAGR)

$$p^*(t) = \frac{r}{f} \times \frac{p(t)}{1 - (1 - r)^{\tau}}$$

: the modeled unitary cost

p : the actual unitary cost at procurement timef : fraction of the investment dedicated to pure resources

 τ : hardware warranty time (years)

unitary cost decrease rate (eg 20%)

$$C(t) = C_0 e^{-\alpha t}$$

- IT evolutions in exponential profile
- Resource cost decrease by X % per year (CAGR)