CMS reconstruction improvements for tracking in large pile-up events

Marco Rovere, CERN

On behalf of the CMS Collaboration

CMS Tracker

Overview of Tracking and Vertexing in Run I

The CMS Tracker

Pixel: 66M channels, 100x150 µm²

SiStrip: 9.6M channels, 80-100 µm pitch, 10-20 cm

Double-sided: 100 mrad to provide 3D information Lower occupancy in Pixel

> In-out tracking from pixel layers

CMS Track and Vertex Reconstruction

- Tracking based on Kalman Filter
 - Seeding, pattern recognition, fitting, selection
- Iterative procedure
 - Remove hits, reduce combinatory
- Track Cluster with Deterministic Annealing
 - Adaptive vertex fit
 - Vertices sorted by Σp_T²

	<u> </u>	
Name	Seeding	Target
Initial	Pixel triplets	Prompt, high p_T
LowPtTriplet	Pixel triplets	Prompt, low p _T
PixelPair	Pixel pairs	High p _T , recovery
DetachedTriplet	Pixel triplets	Displaced
MixedTriplet	Pixel+strip triplets	Displaced-
PixelLess	Inner strip pair	Displace+
TobTec	Outer strip pair	Displaced++

Production Radius [cm] 4

Tracking Developments

It's all about the pile-up

- Tracking becomes a challenge due to increase occupancy
 - At 25ns bunch-spacing, out of time pile-up causes +45% in SiStrip occupancy(+5% in pixels)
- Pixel are affected by dynamic inefficiency due to saturation of the readout chip
- Run2: ~1 fb⁻¹ 50ns<PU25>, ~9 fb⁻¹ 25ns<PU25>
 ~9 fb⁻¹ 25ns<PU40>

Run II tracking developments

- New algorithm for strip-seeded steps
 - χ^2 cut from straight line fit of 3 points in the RZ plane.
 - rejects half of the seeds reconstructing the same number of tracks.
- 25ns bx induces an increase in occupancy for the strip detector: 2x on timing and fake rate
- Clusters from out of time pile-up have low collected charge
 - cutting on the cluster charge suppresses the effect
 - · can be applied @upfront, @seeding or @pattern-recognition
 - accounts for sensor thickness and trajectory crossing angle

Run II tracking developments Effects on timing

- The new seeding and the cluster charge cut reduce timing of PixelLess and TobTec by 2x
- Physics performances and timing in different conditions:
 - TTbar samples with
 - BX=25 ns, <PU>=25, 40, 70, 140
 - BX=50 ns, <PU>=25
- Iterative tracking time reduction @25 ns:

Tracking Physics oriented developments Muons

- A loss of muon reconstruction efficiency in the tracker was observed in 2012 data, increasing with pile-up.
- Two additional iterations have been designed:
 - Outside-in: seeded from the muon system, recover the missing muon-track in the tracker
 - Inside-Out: re-reconstruct muon-tagged tracks with looser requirements to improve the hit-collection efficiency

Full efficiency recovered with the new iterations

Tracking Physics oriented developments

High-p_T Jets

 Tracking in high p_T jets is crucial for b- and **τ**-tagging efficiency

- Dense environment:
 - small two-track separation
 - merged clusters: only one hit with bad estimated position and uncertainty
- A new dedicated iteration has been developed
 - regional, along high p_T calo jets
 - threshold trade-of between timing and physics
 - cluster splitting
 - looser tracking cuts to follow combinatorial expansion
- improved efficiency at small ΔR

Physics Performances

Run I and Run II in different PU conditions

Run II Tracking Performances Run I and Run II with nominal conditions

- The most relevant comparison is with nominal PU conditions
 - Run1 tracking with <PU>=25, BX=50ns
 - Run2 tracking with <PU>=40, BX=25ns
- With much worse conditions, in Run2 we have same efficiency for prompt tracks, slightly higher fake rate, slightly lower efficiency for displaced tracks
- Run2 CMS physics performance ~ the same despite large PU increase, at least for objects based on tracks

Conclusions

Conclusions

- High pile-up is a challenge for tracking
- Many developments have been included in CMS' tracking code for Run2
 - Timing is now under control
 - Should expect the same or better physics performances as in Runl
 - Work is not over and many other developments are on their way
- Should profit of the experience gained in this process and transfer it into upgrade's projects.

Backup Slides

SiStrip Cluster Charge Distribution

Run II Tracking Performances Run I-like conditions

- TTbar events with <PU>=25, BX=25,50ns
- Same or higher efficiency for prompt tracks
- 2x reduction in fake rate
- Up to 6x reduction in fake rate in RunII like conditions

Primary Vertex Performances

- The reconstructed vertices vs PU shows a linear trend with slope ~0.7 up to PU70.
 - Excess of reconstructed vertices for PU140
- The number of matched vertices has linear trend over all range
 - vertex matches a simulated if $|\Delta z| < 1$ mm and $|\Delta z| < 3\sigma_z$
- These results are the effect of a faster than linear increase in fake rate and a linear decrease in efficiency

Primary Vertex Performances

Fraction of ghost hits vs PU

Unmasked Hits per iterations

