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NOvA
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• NuMI is a neutrino source at Fermilab
• Narrow energy peak near 2 GeV
• Mostly 𝜈𝜈𝜇𝜇
• Can run in �̅�𝜈𝜇𝜇 mode

• NOvA is a neutrino oscillation 
experiment

• Two functionally identical detectors
• 14 mrad off-axis

• 𝜈𝜈𝜇𝜇 →𝜈𝜈𝑒𝑒, 𝜈𝜈𝜇𝜇 →𝜈𝜈𝜇𝜇, 𝜈𝜈𝜇𝜇 →𝜈𝜈𝑒𝑒, 𝜈𝜈𝜇𝜇 →𝜈𝜈𝜇𝜇
• Measure θ13, θ23, mass hierarchy, 

and δCP

Near Detector Far Detector

baseline (km) 1 810

mass (kton) 0.3 14

channels 20,192 344,064



NOvA Detectors
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• Basic unit of NOvA detectors is an extruded PVC cell
• Cells are filled with liquid scintillator
• Wavelength shifting fiber transmits scintillation light to readout
• Avalanche photo-diodes capture light output from fiber



Events in NOνA The fine detector segmentation and low-Z allow 
for differences between “tracky” muons, 
“showery” electrons, and “gappy” π0’s  to be seen.
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1 radiation length = 38cm (6 cell depths, 10 cell widths)
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NOvA Reconstruction

A far detector event showing 550 usec of data.
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Separating Event Interactions
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NOvA Reconstruction
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2d line finding
(2-point Hough transform)

vertex reconstruction
(Elastic arms)

slicing
coarse event-level time-space 

clustering

2d cluster formation
(fuzzy k-means)

3d cluster matching

νe CC event ID
(ANN, LEM)
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Vertex first approach 
to increase 
significance of short 
proton and neutron 
tracks.

Path geared toward electron neutrino 
identification, reconstruction still 
applicable to other particles.



Separating Event Interactions
• Uses an expanding density based clustering algorithm called 

DBSCAN*
• Hits are clustered based on a causality score (two hits are 

neighbors if their score is < threshold.)

• Slice borders are defined by regions where the neighborhood 
density drops below some critical value.

• The algorithm expands from neighbor to neighbor to find all 
borders.

Far Detector: ave. completeness = ~99% ave. purity = ~99%
Near Detector:    ave. completeness = ~95% ave. purity = ~98%

NOvA Reconstruction

*   M. Ester, et. al., A 
Density-Based Algorithm for 
Discovering Clusters in Large 
Spatial Databases with Noise 
(1996)
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NOvA Reconstruction

A far detector event prior to slicing showing 550 usec of data.
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Separating Event Interactions
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NOvA Reconstruction

A far detector event after slicing has been applied.
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Separating Event Interactions
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Multi-Hough Transform:
Building Guidelines

• Modified algorithm where 
pairs of points are mapped into 
hough space, more robust 
against noise.

• Points near lines are removed 
in an iterative process in order 
to find finer structure.

CHEP 2015,  April 13-17 NOvA Reconstruction

Fernandes & Oliveira, Pattern Recognition 41 (2008) 299-314

The iterative line finding process 
allows the small line seen here to 
become significant.

90%
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In 90 % of all charged 
current events the 
prominent hough line comes 
within 11 cm of the event 
vertex.



Elastic Arms: Vertex Finding
• The algorithm fits a model of a single vertex and N “arms” to the event by 

minimizing the energy function below.

• Hough lines and intersections are used as seeds for arms and vertex.
• This is a unique application because the vertex location is not known a priori.
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M. Gyulassy and M. Harlander, Computer Physics Communications, 66 (1991) 32-46.
M. Ohlsson, C. Peterson, Computer Physics Communications, 71 (1992) 77-98.
M. Ohlsson, Computer Physics Communications, 77 (1993) 19-32.
R. Fruwirth and A. Strandie, Computer Physics Communications, 120 (1999) 197-214.
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Vertexing
Performance

The vertex resolution for all νe
cc events is less than 5cm (one 
cell) in X and Y, and 8 cm in Z. 
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Far Detector Simulation
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Possibilistic Fuzzy K-Means Clustering
• “Fuzzy”: Individual hits are allowed to have membership in 

multiple clusters.

• “Possibilistic”: A cells total membership cannot exceed one, 
but it is not normalized, allowing noise hits to be unclustered.

• Cluster number not known a priori, start with 1 cluster and 
iterate until all hits are accounted for.

• Clustering is done separately in each view of the detector and 
then matches are made based on cluster characteristics.
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Distance to cluster centers

Cell 
hit j

Angular uncertainty,
derived from simulation

Cluster 
center i

Cluster Membership

Updating cluster centers

R. Krishnapuram, J.M. Keller, A possibilistic approach to clustering, IEEE Trans. Fuzzy Syst. 1 (1993) 98110.
M.-S. Yang, K.-L. Wu, Unsupervised possibilistic clustering, Pattern Recognition, 39 (2006), pp. 521.
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3-D View
Matching
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Match by minimizing the Kuiper metric, 
K= min(D+ + D-).
Where D+ and D- are the largest positive 
and negative distances between energy 
profiles.

YZ 1

YZ 2

XZ 1
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550 μs Near Detector readout window
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Beam direction



Zooming in on 10 μs beam window
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Beam direction



Separating event into slices
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Beam direction



One slice before vertexing and clustering
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Beam direction
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Near Detector νe candidate after vertexing and 
clustering
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Beam direction



Event Classification
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• Two different event classification techniques 
used for electron neutrino analysis, achieve 
same performance.

• ANN (LID)
• Uses showers produced in 

reconstruction described previously.
• Log-likelihoods computed by matching 

shower dE/dx to templates for different 
particle hypotheses.

• Likelihoods and other inputs fed into 
neural net.

• LEM
• Events are matched to an MC Library.
• See Track 2 talk by D. Rocco, “The Library 

Event Matching classifier for νe events in 
NOvA”

20



Electron Identification
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Above: dE/dx in transverse shower direction on 
the shower core for electron and π0 simulation.

Below: dE/dx in the transverse direction 15 cm 
removed from the core for the same particles.

• With fine-grained detector sample dE/dx in 
showers produced by previous 
reconstruction.

• From simulation create shower templates 
for different particle hypotheses (pictured 
right).

• Compare dE/dx plane-by-plane between a 
candidate shower and the templates to 
build log-likelihood (LL) differences between 
the particle types, eg LL(e) – LL(π0) (next 
slide).

• Feed LLs and other variables into an 
artificial neural net to classify the degree to 
which an event is an electron neutrino 
charged-current interaction.



Electron Identification
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Conclusions

• A series of pattern-recognition algorithms have 
been adapted and chained into a vertex-first 
approach that works well for short and long tracks 
or showers

• Reconstruction forms basis of neural net for 
electron neutrino event classification

• Stay tuned for first physics results this summer
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Backup
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Far detector picture

550 μs readout window of cosmic 
ray background at the Far Detector



NOvA νμ Charged-current Candidate (Far Detector)
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X-Z readout view

Y-Z readout view
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Beam direction



NOvA νe* Charged-current Candidate (Far Detector)

* particle IDs blinded until analysis finalized
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X-Z readout view

Y-Z readout view
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Beam direction



NuMI Beam
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• Existing beamline at Fermilab, 
used for MINOS delivers 10 
microsecond pulses.

• Upgrades in 2012 reduced 
cycle time to 1.33 s.

• Will be capable of 700 kW 
after upgrades to Booster ring 
RF cavities and slip-stacking in 
the Recycler are complete.

28
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DCM FEB

Far Detector completed in August 2014
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Near Detector 
complete in August 
2014
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Timing Resolution
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• Front-end boards shape 
pulses from the APD.

• ADC of each channel 
periodically sampled, no 
opening of gates.

• 500 ns intervals at Far 
Detector

• 125 ns intervals at Near 
Detector

• Duel correlated sampling 
used to trigger readout.

• Sampling multiple points 
allows for improved timing 
resolution.



Timing Resolution
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Far Detector Near Detector

Timing resolution derived in data by calculating the time difference between pairs of hits on 
well reconstructed cosmic tracks after correcting for detector location and time-of-flight.

10 ns timing resolution Faster ND clocking yields 5 ns timing 
resolution which reduces pile-up.
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1. Hough algorithm to 
draw guidelines.

2. Elastic arms to find 
global vertex.

3. Fuzzy k-means 
algorithm to make final 
clusters.

Simulated 2 
GeV ccqe event.
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1. Hough algorithm to 
draw guidelines.

2. Elastic arms to find 
global vertex.

3. Fuzzy k-means 
algorithm to make final 
clusters.

Simulated 2 
GeV ccqe event.
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Multi-Hough (1) X Hough Map

Y Hough Map
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X Hough Map

Y Hough Map

Multi-Hough (2)
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X Hough Map

Y Hough Map

Multi-Hough (3)
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X Hough Map

Y Hough Map

Multi-Hough (4)
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2 Point Hough transform
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2 Point Multi-Hough transform
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Vertexing Performance
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Far Detector Simulation
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Vertexing Performance
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Vertexing Performance
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Clustering Performance
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Achieves >90% completeness and >80% purity at energies of interest in 
reconstructing a cluster capturing the primary electron in a charged current 
interaction.

Far Detector Simulation

Completeness =
electron energy in cluster
electron energy in event

Purity =
electron energy in cluster

total energy in cluster

44

Completeness of Electron Reconstruction Purity of Electron Reconstruction



Clustering Performance
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Clustering Performance
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