
810 km

63 m

15.6 m

15.6 m

Far
Detector

14 kton

Near
Detector

0.296 kton

4.2 m

4.2 m

Main
Injector

NuMI
Beam

http://www-nova.fnal.gov nitin@fnal.gov

 NOvA is an off-axis long-baseline
neutrino experiment using the NuMI
neutrino beam and two detectors to
look for ne appearance

Message Service Analyzer and Error
Handling in NOvA detector

 The Near Detector is located at
Fermilab, 14 mrad off the NuMI
beam axis, 100 m underground, 1
km downstream of the beam
production target .

 The Far Detector is located at Ash
River, in northern Minnesota, 14
mrad off the NuMI beam axis, 810
km downstream of the beam
production target

The far(near) detector is composed
of 28(6) blocks; each block is made
of 32(24) scintillator PVC planes,
giving 896(214) planes in total. The
near detector also has a muon
catcher which is composed of 12
scintillator PVC planes and 10 steel
planes. NOvA is the world’s biggest

freestanding plastic structure.

NOvA Detectors

NOvA DAQ

A schematic overview of the NOvA DAQ system. The data stream is from left to right.
There are almost 200 DCMs and 200 buffer nodes. The data acquisition (DAQ) system
of NOvA is complex, consisting of more than 400 distributed but closely-interacting
components. For the Far Detector, 12,036 front-end boards are used to continuously
read out 385,152 detector channels. The raw data are first concatenated, based on the
geometrical location of the detectors, in Data Concentrator Modules (DCMs). They are
then pushed downstream to a buffer farm. There are nodes dedicated to management
and coordination of the system, e.g., run control, application manager, message server,
and DAQ online monitor. Therefore, to maintain a healthy running state of the DAQ
system, it is necessary to have a means of continuously monitoring each participating
component and for detecting and reacting, with minimum delay, to abnormalities that
might put the system or the quality of data in jeopardy. The system which takes care

of it is called as Automatic Error Recovery System (AERS).

 The AERS is composed of three functional parts:

 Status Report: Status report from each component and from dedicated

monitoring nodes.
Status reports are issued, routed, collected and stored though a distributed
message service package MESSAGE FACILITY developed by ssi@Fermilab.

 Message Analyzer : Decision making engine performs the correlation

analysis based on the status reports.
Message analyzer is a rule engine that processes Event-Condition-Action rules
(ECA): if “DCM heart attack" and “during data taking" then send an “email to the
shifter".

 SUPERVISOR: Error handling supervisor reacts to situations and carries out

the action.
The action part of an ECA rule submits the detected error to the supervisor.
Supervisor takes proper action based on error submitted and supervisor’s
knowledge about this error.

Message Analyzer
 It is a real time event correlation analysis
tool based on log messages.

 It implements a forward chaining
inference engine.

 It deals with two level of cascading ECA
rules:

1. Fact Extraction: Driven by incoming messages to
extract facts from status logs. Performs a series of
tests on incoming message based on following
attributes:
(A) Issuer, severity and category.
(B)Regex pattern matching.
(C)Occurrence/frequency.
Output of fact extraction is a BOOLEAN FLAG.
Ex: During data taking NOvA run control sends out

a heartbeat check every second to components
and expects a response otherwise emits a status
message. A Fact that “DCM has a heart attack” is
asserted as:

 Test whether the sender is “RunControl”.
 Test whether the severity is “Warning” or higher.
 Test whether the category is “RegularCheck”.
 Test whether the body matches regex

expression “DCM missed heartbeats”.
 Test whether the message has been seen over

10 times in the past 60 seconds.
If passes all five test, a flag of TRUE is marked
under the fact “DCM has a heart attack”.

2. Event Identification: Correlation analysis (rule)
based on ‘facts’ to identify events. Use logically
correlated facts to identify events:
“event of dcm_failure is asserted when both
dcm_heartattack and dcm_selfcheck_failure
flagged during data_taking or hardware_config
stage”.

Cascading rules: When a rule is triggered for
querying its condition on an incoming event,
executing its action may in turn trigger new rules
for further assessment.

Automatic Error Recovery System – AERS

Message Analyzer: class diagrams

Acknowledgement and
references:

Extended Approach

User defined function

Message Analyzer:
Execution flow chart

Facts & Rules in Configuration Language

It will be complicated to write facts and rules for
each connecting component, which differ slightly. To
cope with this issue, we have a ‘grouping’ approach
called the Extended Approach. This extends a
primitive fact into a collection of related facts by
distinguishing sources and targets of a message.
Collapse similar facts using wildcards and add a
restriction clause.
 Fact1: F1: RC:dcm-?? Missed heartbeats
 Fact2: F2: dcm-??:I’m not happy
 Rule with restriction clause:

R1:=F1&&F2 where the target of F1 is same as
the source of F2.

The facts and rules form the knowledge base of the
Message Analyzer, provided in the form of a
configuration file. One simple rule is shown below:

Sometimes, more complex situations
can not be handled just by the above
rules. We have in this case user-
defined functions which enable the
Message Analyzer to handle a great
deal of more complex situations using
customized logic implemented in a
generic programming language such
as C++.

Summary and Outlook

 Message Analyzer is a light-weight correlation analysis tool with great flexibility and
extensibility.

 It is being used for monitoring run state and data quality in the NOvA DAQ system.

 Separation of the system knowledge (the rules) from the software implementation.
Composing facts/rules using a Domain-specific Rule Language.

 The package has been made generic and portable. Easy migration to other
experiments.

Rule_simple :

{

type : simple

description : “this is an example of a basic rule”

filtering conditions

severity : warning

sources : [“dcm.*”, “rcWindow”]

categories : [“*”]

match by regex, or match by ‘if contains’, not both

regex : “corruption\s.*\sdcm-03-\d{2}-\d{2}”

frequency count can be for each source

rate : { occurrence : 10

timespan : 60 # in seconds

}

granularity

granularity : { pre_source : true }

actions can be empty

actions : { alert : { level:warning message:“%s corrupted” }

popup : { message : “…” }

RunControl : { … } }

}

Message Analyzer GUI at NOvA

Paper read at

Nitin Yadav, Qiming Lu
Indian Institute of Technology Guwahati, Fermilab

21

21

