
Integrating grid and cloud resources at the RAL Tier-1 
 

Andrew Lahiff,  Alex Dibbo, George Ryall, Frazer Barnsley, Ian Collier 
STFC Rutherford Appleton Laboratory, Harwell Oxford, UK 

Integrating virtualised worker nodes 
•  Based on existing power management features of HTCondor 
•  Virtual machine instantiation 
•  ClassAds for offline machines are sent to the collector when there are free 

resources in the cloud 
•  Negotiator can match idle jobs to the offline machines 
•  Rooster daemon detects these matches and triggers the creation of VMs 

•  Virtual machine lifetime 
•  Managed by HTCondor on the VM itself; configured to: 
•  Only start jobs when the worker node health-check script is successful 
•  Only start new jobs for a specified time period 
•  Shuts the machine down after being idle for a specified time period 

•  Virtual worker nodes are drained when resources on the cloud become scarce 
•  Once machines have drained the resources are returned to the cloud 
•  Ensures that the batch system doesn’t completely take over the cloud 

•  The OpenNebula XML-RPC API is used instead of EC2 as it was found to be more 
reliable and flexible 
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Monitoring 
•  Virtualised worker nodes have standard Ganglia monitoring 
•  Historically our bare metal worker nodes have always had Nagios monitoring 
•  Nagios doesn’t handle dynamic resources well 
•  Decided not to use Nagios at all on virtualised worker nodes 

•  All worker nodes (virtualised or bare metal) should only run jobs if they are healthy 
•  A health-check script runs on each worker node as HTCondor startd cron 
•  Checks for read-only or problematic disks, CVMFS, … 

•  START expression configured so that new jobs will only start if node is healthy 

Conclusion 
•  We have demonstrated a simple method for allowing a HTCondor pool to make 

opportunistic usage of resources from a private cloud 
•  The condor_rooster daemon is used to provision cloud resources 
•  Virtualised worker nodes are drained and resources returned to the cloud when the 

cloud becomes busy 
•  Our next step will be to integrate the system described here with our production batch 

system and make use of the available cloud resources on a daily basis 

SCD Cloud 
•  Initial use case is to provide a self-service portal for members of the Scientific 

Computing Department to obtain VMs for development work 
•  Eventually expect to be able offer access to the LHC and other experiments via cloud 

APIs 
•  OpenNebula based cloud with a Ceph storage backend 
•  28 hypervisors consisting of 892 cores and 3.4 TB RAM 
•  750 TB raw storage, 10 Gb/s networking 
•  Headnode and Galera MariaDB database cluster are on VMs in Hyper-V production 

virtualisation infrastructure   

Introduction 
•  Grid submission to traditional batch systems remains by far the primary method of 

running work at WLCG sites 
•  The ability to use virtualised worker nodes running on a cloud in a traditional batch 

system is potentially very useful, as it allows a site to: 
1.  Provide both cloud and grid computing resources without partitioning 
2.  Make use of a local private cloud when there are idle jobs in the batch system and 

there are free resources in the cloud 
•  There are two aspects to this for the situation where the cloud is for opportunistic use 

only: 
•  Expanding the batch system into the cloud when the cloud has free resources 
•  Reducing the amount of cloud resources used in the batch system when the cloud 

becomes busy 
•  Here we present work carried out at the RAL Tier-1 where we investigated including 

resources from our OpenNebula cloud into our HTCondor batch system 
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Security and traceability 
•  Quarantining of disk images 
•  Snapshots of images are kept for short periods of time in order to allow us to 

investigate potential user abuse of short-lived VMs 
•  At VM instantiation, an OpenNebula hook creates a deferred shap-shot to be 

executed when the machine is shutdown 
•  A cron job runs daily to delete any images older than a specified age 

•  Worker node image configured to log to our central loggers using syslog 
•  Open Nebula VM IDs are made available in job ClassAds so that we can easily find out 

what VM a job ran on 
•  HTCondor in the worker node image is configured to advertise the unique VM ID 
•  Schedds are configured to insert this ID into job ClassAds 
•  Independently of this, log files can be used to easily determine what VM a particular 

job ran on 
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Batch system at the RAL Tier-1 
•  The RAL batch system consists of 560 worker nodes and over 12000 cores 
•  During 2013 we migrated from Torque/Maui to HCondor due to increased reliability, 

scalability, flexibility and ability to handle dynamic resources 
•  One significant advantage of HTCondor over alternatives is that it was designed to 

make use of opportunistic resources (e.g. idle desktops) 
•  This makes HTCondor perfectly suited for dynamic environments where the amount 

of resources available is constantly changing (e.g. opportunistic expansion into a cloud) 

Number of cores in the batch 
system increases when there are 
idle jobs, and decreases when there 
are no idle jobs 
 
Draining is used to free-up cloud 
resources used by the batch  
system 

The batch system uses up cloud 
resources when needed but ensures 
there are always some free 
resources (cores & DHCP leases) 


