Science & Technology

Facilities Council

www.stfc.ac.uk

Integrating grid and cloud resources at the RAL Tier-|

Andrew Lahiff, Alex Dibbo, George Ryall, Frazer Barnsley, lan Collier
STFC Rutherford Appleton Laboratory, Harwell Oxford, UK

~

4 Introduction
* Grid submission to traditional batch systems remains by far the primary method of
running work at WLCG sites
* The ability to use virtualised worker nodes running on a cloud in a traditional batch
system is potentially very useful, as it allows a site to:
I. Provide both cloud and grid computing resources without partitioning
2. Make use of a local private cloud when there are idle jobs in the batch system and
there are free resources in the cloud
* There are two aspects to this for the situation where the cloud is for opportunistic use
only:
* Expanding the batch system into the cloud when the cloud has free resources
* Reducing the amount of cloud resources used in the batch system when the cloud
becomes busy
* Here we present work carried out at the RAL Tier-|1 where we investigated including
k resources from our OpenNebula cloud into our HTCondor batch system

J

(SCD Cloud h

* Initial use case is to provide a self-service portal for members of the Scientific
Computing Department to obtain VMs for development work
* Eventually expect to be able offer access to the LHC and other experiments via cloud

APIs

* OpenNebula based cloud with a Ceph storage backend

* 28 hypervisors consisting of 892 cores and 3.4 TB RAM

* 750 TB raw storage, |0 Gb/s networking

* Headnode and Galera MariaDB database cluster are on VMs in Hyper-V production

K virtualisation infrastructure /

()
Monitoring
* Virtualised worker nodes have standard Ganglia monitoring
* Historically our bare metal worker nodes have always had Nagios monitoring
* Nagios doesn’t handle dynamic resources well
* Decided not to use Nagios at all on virtualised worker nodes
» All worker nodes (virtualised or bare metal) should only run jobs if they are healthy
* A health-check script runs on each worker node as HTCondor startd cron
* Checks for read-only or problematic disks, CVMFS, ...

/

» START expression configured so that new jobs will only start if node is healthy

-

Security and traceability

Quarantining of disk images

* Snapshots of images are kept for short periods of time in order to allow us to
investigate potential user abuse of short-lived VMs

* AtVM instantiation,an OpenNebula hook creates a deferred shap-shot to be
executed when the machine is shutdown

* A cron job runs daily to delete any images older than a specified age

* Worker node image configured to log to our central loggers using syslog

* Open NebulaVM IDs are made available in job ClassAds so that we can easily find out

whatVM a job ran on

* HTCondor in the worker node image is configured to advertise the unique VM ID

* Schedds are configured to insert this ID into job ClassAds

* Independently of this, log files can be used to easily determine whatVM a particular

_ job ran on Y,

(Batch system at the RAL Tier-1 b
* The RAL batch system consists of 560 worker nodes and over 12000 cores
* During 2013 we migrated from Torque/Maui to HCondor due to increased reliability,
scalability, flexibility and ability to handle dynamic resources
* One significant advantage of HTCondor over alternatives is that it was designed to
make use of opportunistic resources (e.g. idle desktops)
* This makes HTCondor perfectly suited for dynamic environments where the amount

of resources available is constantly changing (e.g. opportunistic expansion into a cloud)

_

UK Computing for Particle Physics 1il

%\%g Grid

_

\

Integrating virtualised worker nodes

Based on existing power management features of HTCondor
Virtual machine instantiation
* ClassAds for offline machines are sent to the collector when there are free
resources in the cloud
* Negotiator can match idle jobs to the offline machines
* Rooster daemon detects these matches and triggers the creation of VMs
Virtual machine lifetime
* Managed by HTCondor on the VM itself; configured to:
* Only start jobs when the worker node health-check script is successful
* Only start new jobs for a specified time period
* Shuts the machine down after being idle for a specified time period
* Virtual worker nodes are drained when resources on the cloud become scarce
* Once machines have drained the resources are returned to the cloud
* Ensures that the batch system doesn’t completely take over the cloud
The OpenNebula XML-RPC API is used instead of EC2 as it was found to be more

reliable and flexible
Offline Draining
ARC CEs machine
condor_schedds ClassAds
I Central manager
r—y-————7 == 1

condor_rooster

Worker nodes I
condor_startd

Virtual worker nodes
condor_startd

)

Results
Cores in the cloud
Cores in cloud The batch system uses up cloud
resources when needed but ensures
there are always some free
resources (cores & DHCP leases)
Cores in the batch system
Goreeimbatchaystem Number of cores in the batch
system increases when there are
idle jobs, and decreases when there
are no idle jobs
s oy i3 Draining is used to free-up cloud
. o resources used by the batch
Running and idle jobs system
Running & idle jobs
()
Conclusion
* We have demonstrated a simple method for allowing a HTCondor pool to make
opportunistic usage of resources from a private cloud
* The condor_rooster daemon is used to provision cloud resources
* Virtualised worker nodes are drained and resources returned to the cloud when the
cloud becomes busy
* Our next step will be to integrate the system described here with our production batch
system and make use of the available cloud resources on a daily basis
- J

