

The LHCb Data Aquisition and High Level Trigger Architecture

Overview of the most important changes after LS1

- New HLT architecture technical aspects
- Online calibrations
- Miscellanea

M.Frank, C.Gaspar, B.Jost, N.Neufeld CERN / LHCb

April 16th 2015

CHEP2015 Okinawa/Japan Markus Frank / CERN

LHCb Online Computing in Numbers

Readout Network

LHCb Online Computing Infrastructure

Substantial resources

- Spectrometer for beauty and charm quark analysis at LHC
- 40 MHz collision rate
- L0 trigger (hardware) Accept rate: ~ 1 MHz Network capacity: ~ 100 GB/s
- Data sources: ~ 323
- Event packing: ~ 13
- High Level Trigger (HLT): HLT1 accept rate ~ 100-200 kHz HLT2 Accept rate ~ 10 kHz Event size: ~ 70 KB
 - 62 Racks
 - 1800 Data handling nodes
 - 200 Controls nodes
- HLT hardware
 - ~ 1750 Nodes
 - ~ 25000 physical CPU cores
 - ~ 50000 Trigger processes
 - 5000 Infrastructure tasks

The Boost: Possible Gain of CPU Time

- Stable beams during ~ 30% of the running period
 - 70% of the time the CPU resources are idle
- Take advantage
 - Sophisticated event filtering
 - Better select
 'interesting'
 events
 - Improved physics

The Road map to Benefit from Idle Time

- Defer computing needs to time without beam
 - Save events on the local disk of the worker nodes
- Need to split high level trigger program 'Moore'
 - First stage saves preselected events
 - Second stage performs final event filtering
- Need calibration constants with 'offline quality'
 - Focus on online calibration and alignment activities

April 16th.2015

CHEP2015 Okinawa/Japan Markus Frank / CERN

Controls Aspects

- At top level 3 simultaneous activities
 - Orchestrated by Big Brother
 - HLT farm is shared resource

- At low level
 - Node controllers orchestrate processes on one node
 - 1 controller / activity

The Basic Pattern: Buffer Manager

- Managed shared memory
- Producers declare events
- Consumers subscribe to events
 - Get notified on data present
 - Pattern used whenever event data are moved
 - HLT farm, storage-, monitoring- and reconstruction cluster

See M.Frank et al., "The LHCb High Level Trigger Software Framework", CHEP 2007, Proceedings, Victoria, BC, CA

The Process Architecture: Worker Node

-

CHEP2015 Okinawa/Japan Markus Frank / CERN

Action Sequence During Fill

- When VertexLocator (VELO) subdetector is closed:
 - Accumulate data for tracking detector alignment O(5 min)
 - Perform tracking detector alignment on these data O(6 min)
 - Change run in HLT1 partition and load tracking alignment
 - Take data for the rest of the fill using offline quality alignment
 - Change run every ~60 minutes
- At end of each run taken with the DAQ / HLT1
 - Perform RICH calibrations
 - Start HLT2 processing
 - Start HLT2 monitoring
- At end of each run processed by HLT2
 - Start data quality monitoring

Operational Remarks (1)

- HLT1 and HLT2 and calibration activities are asynchronous
 - Loose coupling through local disk cache
 - Pre-selection of events used for tracker alignment
 - HLT1 must execute real-time
 - HLT2 executes later
 - Optimize usage of disk cache <=> HLT1 rejection (CPU)
 => physics group

Operational Remarks (2)

- HLT1 requires 'offline-quality' tracking alignment
 - For first run of each fill
 => Use alignment of previous run
 => Collect events to align tracking detectors
 - Calibrate alignment with collected event-sample
 - HLT1 picks up new constants on Run-Change
- At HLT1 end-of-run (after every ~60 min)
 - Start calibration of other subdetectors
 - Then mark run as 'HLT2 ready' (allow processing)

Worker Nodes Resource Management

- We must minimize resource usage
 - HLT1 and HLT2 processes execution simultaneously
 - Nodes are 'over-committed' More processes than CPU cores / hyper-threads
 - Memory scarce: 2 GB/core
 - Limit CPU and network accesses during configuration
- Resource sharing is mandatory ⁽¹⁾
 - Copy-on-write mechanism saves us ~70% of memory Trigger processes forked after configuration phase
 - Quick application startup using process checkpointing

⁽¹⁾ See M.Frank et al., "Optimization of the HLT Resource Consumption in the LHCb Experiment", CHEP 2012, Proceedings, New York, NY/US

Monitoring

• Detector and HLT1

- Detector performance monitoring with small data stream with HLT1 accepted events in dedicated monitoring farm^(*)
- HLT2 monitoring
 - Based on files with HLT2 accepted events
 - Performed on dedicated facility
 - Cannot be done online: Simultaneous processing of many runs
- Data quality monitoring
 - Based on data files
 - Performed on dedicated facility

(*) See M.Frank et al., "Online Data Monitoring in the LHCb Experiment", CHEP 2007, Proceedings, Victoria, BC, CA

Miscellanea

- Basic DAQ architecture unchanged
- All servers > 6 years exchanged
- All control nodes are virtualized
- All web servers are virtualized
- Local disk space on HLT worker nodes

Raw space	Usable	100 kHz	Buffer	LHC eff. 30 %
12 PB	~ 6 PB	10 ⁶ seconds	~ 11 days	~ 38 days

- Sufficient to keep farm busy during major MD phases

Conclusions

- We managed a redesign of the high level trigger infrastructure
 - Using periods without beam boost CPU usage by 200 %
 - Improve event selection, better physics
 - Farm upgraded, replacement of obsolete equipment
- Benefits from consequent application of patterns
 - Multiple instances of functionally similar entities
 - Buffer manager, node control, run control

HLT2 and Data Quality Monitoring

- Scan run DB and data area for runs to be processed
- Prepare work for reader node
- Distribute events to workers
- Combine and save
 histograms from workers
- Processes controlled by WinCC (as on farm)

