The ATLAS Trigger System: Ready for Run-2

Yu Nakahama (KEK/CERN) for the ATLAS collaboration

CHEP 2015 Okinawa, April 13-17, 2015

Introduction

- The ATLAS trigger system operated successfully in Run-1.
 - Selected events online at \sqrt{s} up to 8 TeV between 2009 and 2013
 - with high efficiencies for a wide range of physics processes in ATLAS
- In Run-2, trigger rates are expected to increase by a factor of ~5.

Period: year	Bunch-spacing	√s	Luminosity	Pileup µ _{peak}
Run-1: 2012	50 ns	8 TeV	~8e33	40 (8e33)
Run-2: 2015-2018	25 ns	13 TeV	1-2e34	25-50 (1e34)

- A factor of ~2 due to energy increase (higher for high p_T jets)
- A factor of 2-3 due to luminosity
- In this talk, the upgrades to the ATLAS trigger system for Run-2 are reviewed.
 - These improvements help reduce trigger rates to acceptable levels, while maintaining or even improving efficiencies in the challenging conditions.
 - These are the result of the hard work of hundreds of people over the last two years.

New trigger features in Run-2

• Two staged trigger system (was three-staged in Run-1).

Stage	Functionalities	Components	Latency	Rate reduction
Level-1 (L1)	Fast custom-made electronics finds regions of interests using Calorimeter/ Muon data with coarse info	L1Calo, L1Muon, L1Topo, Central Trigger Processor	< 2.5 μs	40 MHz ➔ 100 kHz
High-Level Trigger (HLT)	Fast algorithms in RoI, or offline-like ones with full-event info on PC farm	(FTK,) HLT farm	~0.2 s (average)	→ 1 kHz (average)

- Many new features in Run-2
 - This talk will focus on the ones in red.

See talk on CTP by Julian Glatzer

L1 Calorimeter trigger

- In Run-1, L1 E_T^{miss} rates were severely affected by pile-up at start of bunch train.
 - Due to unbalanced overlapping of bipolar signal shapes in the EM calorimeter
- In Run-2, more flexible signal processing at new Multi-Chip Module

- Dynamic pedestal subtraction based on global cell occupancy and in-bunch train positions
 → Huge reduction of E_T^{miss} rates
- More thresholds can be defined for more varieties of L1 combined triggers
 - − Jets, forward jets: $8+4 \rightarrow 25$. EM, tau clusters: $8 \rightarrow 16$ each

New L1 Topological trigger module

- In Run-2, event topological selections between L1 objects are used to keep low L1 thresholds.
 - Decisions on FPGA within L1 latency
 - Variety of algorithms (~15): e.g. angular separation, invariant mass, global quantities like H_T (sum of jet E_T)
 - Essential to final states with E_{T}^{miss} , jets and taus: e.g. for SM Higgs ZH $\rightarrow \overline{v}v\overline{b}b$ and H $\rightarrow \tau\tau$
 - → For ZH→vvbb, loose selection to the smallest ∆φ (L1 E_T^{miss}, L1 central jets).
 L1 E_T^{miss} threshold: 70 GeV → 50 GeV, while keeping efficiencies.

See talk by Eduard Simioni

Improvements in the L1 Muon system

- In Run-1, L1 muon rates in the forward region were polluted by low-p_T charged particles (protons) from out of IP.
 - Significant rate increases at 25 ns
- In Run-2, coincidences with inner detectors are used to clean up these charged particles.
 - With the inner muon chambers placed before the toroid
 - Further with the extended barrel region of the Tile Calorimeter
 - → ~ 50 % rate reduction for L1 muons with p_T > 20 GeV, 1.0<| η |<1.9 at 25 ns
- Additional trigger chambers in the feet of the barrel region
 - 4 % larger acceptance for L1 muons

6

Improvements in the HLT system

- In Run-2, L2, Event Builder & EF farms are merged to a unique HLT farm for simplification and dynamic resource sharing.
 - BW bottlenecks from network were replaced by in-memory transfer.
 - Algorithms mainly reconstruct in region of interest, but can now also do more unseeded reconstruction for specific detectors (Calo, Muons).
 - New fast HLT algorithms with full-data access, closer to offline
 → Reduce rates in early stage against high pileup: e.g.

offline-like tracking and clustering run straight after L1.

See talk on HLT algorithms by Carlo Schiavi

- Ready for increased bandwidth from the DAQ limits
 - − L1 total rates: 70 kHz \rightarrow 100 kHz
 - HLT output rates to storage: 600 Hz \rightarrow 1~1.5 kHz (at peak luminosity)

See talk on data flow by Reiner Hauser

CHEP2015, April 13-17

ATLAS Trigger System (Yu Nakahama)

New trigger strategy in Run-2

- Using these new features, trigger strategy for bandwidth allocation was developed to maximize physics coverage.
 - More flexible with more L1 items than in Run-1
 - Most bandwidth is given to generic triggers as in Run-1: e.g.
 inclusive single electron/muon triggers with thresholds of 25-30 GeV
 - More dedicated/multi-object triggers
- A huge set of trigger selections was implemented.
 - ~300 types of selections at L1 and ~1000 types at HLT
 - Validation is ongoing both online and in MC simulation.
 - → With these selections, no significant efficiency loss is expected in the planned physics programme of ATLAS Run-2, despite the challenging conditions.

Re-commissioning of the ATLAS trigger system

- Testing and debugging step by step in the control room with DAQ and the ATLAS detector for ~1 year. Achieved milestones.
 - Installation of new L1Calo/L1Muon/L1Topo/CTP
 - Intense integration tests of the HLT system
 - Data collection with L1 and HLT selections
 - Operation and monitoring tools functional. Operating the system by shift crews with on-call supports.

 Final commissioning is progressing well using the LHC beam towards a successful physics data-taking in Run-2.

Conclusions

- The ATLAS trigger system was upgraded to cope with harsh conditions in Run-2, while keeping good physics coverage.
 - Many new components or improvements
 - L1Calo, L1Muon, L1Topo processors to keep L1 thresholds low
 - Merged HLT farm for offline-like HLT selections to keep lower rates
 - Flexible trigger strategy for the increased bandwidth
 - No significant efficiency loss is expected in the planned physics programme of ATLAS Run-2.
 - Commissioning is progressing well towards imminent restart of the beam-data-taking. The ATLAS trigger system is ready for Run-2.
- Following the LHC future roadmap and physics programmes for higher luminosities, preparation to the Run-3 trigger upgrade has already started, mainly on L1 systems.