
The evolving grid paradigm and code
“tuning” for modern architectures- are

the two mutually exclusive?
Robin Long and Roger Jones

Lancaster University

1. Introduction
With the data output from the LHC increasing, many of the LHC
experiments have made significant improvements to their code to take
advantage of modern CPU architecture and advanced features. With
the grid environment changing to heavily include virtualisation and cloud
services, we look at whether these two systems can be compatible, or
whether improvements in code are lost through virtualisation. This is
done by comparing the runtime speed improvements achieved in more
recent versions of ATLAS code and seeing if these improvements hold
up on various grid paradigms.

2. Containers vs Virtualisation
Traditional virtualisation requires the whole operating system and
hardware to be virtualised. Using containers, individual applications can
be separated from each other and “virtual machines” can be created but
without the overhead of traditional setups.

Containers allow the running of individual applications and their
dependencies. In the case of docker, these then run on top of the
docker services. Only the userland and applications are virtualised
which allows significant overhead savings. This is detailed in figure 1.

Server
Host Kernel

Userland (OS)

Userland (OS)

Service

Userland (OS)

Service

Userland (OS)

Service

Server
Host Kernel

Userland (OS)
Hypervisor

Kernel

Userland (OS)

Service

Kernel

Userland (OS)

Service

Kernel

Userland (OS)

Service

Server
Host Kernel

Userland (OS)

Service Service Service

Traditional Setup Virtualisation Containerisation

Figure 1: A graphical representation of how bare metal, virtualisation (kvm), and containerisation (docker) works. To run a service on a bare metal machine, we need the kernel,
userland (libraries that interact with the kernel), and the software we want to run. When we create a virtual machines, we need to virtualise all of this. Using containers, we only
need to virtualise the userland and software as the containers userland interacts with the host kernel.

3. The Analysis

Previous analyses have focussed on benchmarking of nodes. However it is important to test real world code, especially as the software is beginning
to diverge away from the benchmarking methods. We specifically focus on the ATLAS software stack, which has had major changes made to its
code, and has also changed the libraries that it relies on. The changes studied have resulted in a three fold speed up in run time.

In this analysis we look at three different grid node setups (all using Scientific Linux 6): Bare Metal, Full virtualisation using kvm, and containerisation
using Docker. By running four different releases of the ATLAS software on the 3 different node configurations, we hope to see whether the
performance benefits brought about from the software changes are maintained, and whether the two virtualisation techniques have a significant
impact on runtime speeds.

4. Results
Two things are immediatly noticable from this plot. Firstly, all three
methods (Baremetal, Virtualisation, and containerisation) have very
similar levels of improvement as the software version is changed.
Secondly, the time taken to reconstruct individual events is
comparable for all three methods across the 4 software versions.

As the software versions are improved dramatic decreases are seen in
the time taken to reconstruct each event (in milliseconds). These
improvements are seen across all three paradigms. Whilst
virtualisation and containerisation are slower, there is no noticable
change in the rate of progress as the software is improved.

For Docker and Bare Metal there is a significant amount of overlap in
the results. Any performance loss in Docker is within the variation
seen in the results. In some cases Docker appears to be faster than
Bare Metal, but more repetitions removes this artefact and shows that
the two are almost identical.

20
00

0
30

00
0

40
00

0
50

00
0

Comparison of Reconstruction Speeds 
 (ATLAS Preliminary Simulation, RDO to ESD)

Software Version

R
ec

on
st

ru
ct

io
n 

T
im

e 
(m

ill
is

ec
on

ds
)

s= 14 TeV
<µ> = 40
25 ns bunch spacing
Run 1 Geometry
pp → tt
HS06 = 16.23
BareMetal
VM
Docker

17.2.7.9, 32bit 19.0.3.3, 64bit 19.1.1.1, 64bit 20.1.2, 64bit

5. Conclusion
Virtualisation and containerisation are shown to have no significant effect on total reconstruction time. For version 17.2.7.9 of the software, Docker
takes on average 0.17 (0.32%) seconds less to reconstruct an event compared to Bare Metal, whereas virtualisation takes 2.5 seconds (4.81%)
longer. By version 20.2.1.Y this has changed to 0.1 (0.85%) and 0.58 seconds (4.66%) longer respectively.

The improvements being made to ATLAS software are not harmed by any of the considered grid paradigms. Furthermore, the software is not hugly
affected by differing paradigms to begin with.

Acknowledgements

The authors would like to thank the ATLAS collaboration for allowing use of the software and datasets for this analysis. Furthermore a special thanks
is extended to Antonio Limosani, whose help and scripts made this analysis possible.

http://www.hep.lancs.ac.uk/∼rel r dot long at lancaster dot ac dot uk


