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CMS collects data on datasets “popularity”

+ i.e. most frequently accessed replicas
+ in terms of # accesses and CPU hours used

The data placement is evolving towards a less static model

+ add replicas of existing datasets that appear to be most popular
+ remove replicas of existing datasets that appear to be |east popular

See another CHEP'15 talk

+ C. Paus et al, “Dynamic Data Management for the Distributed CMS Computing
System” (earlier in this same session)

We discuss here a complementary, looking-forward approach

+ problem formulation: predict which datasets will become popular once they will
be available on the Grid for distributed analysis
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CMS data popularity in 2014 8%

OKINAWA, japan
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Data popularity information is rich in content and in potential correlations

+ in particular the “unpopular” fraction is most interesting
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Not too bad?
+ Maybe..
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+ But there is a "really
unpopular data” bin
whose content has
been just averaged..

+ What's in it?
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[ “bin-0" = data volume with O accesses ]
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All this can be done on data from the past to act in the present.

What if we could learn from the past and perform
predictions for future datasets?

This e.g. will tell us which data to fill fast caches in front of disk systems with

+ in computing system in O(5-10) yrs from now

Plenty of data from computing operations in Run-1 and LS1 are available.
This data is all archived, but rarely (or never) accessed by anyone

+ e.g. transfers, job submissions, site performances, releases logs, analysis performances,
PhEDEx DB, WMAgent logs, Dashboard, SiteDB, SSB, etc...

+ we basically monitor to debug in near-time, not to analyse what happened in the past
+ we never fixed holes in monitoring data, never validated (most of) them with a decent care
not polished and not complete/coherent = not explorable = not exploitable in its current form
Variety (and veracity) are the Big Data V's that matter most here
+ (Volume not negligible, but manageable - Velocity: real-time is not a must)
+ Variety: very irregular data set: structured, semi-structure and unstructured data
+ Veracity: data integrity and the ability to trust them to make decisions is important
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Structured data...

Data transfer service and data replica catalog
Physics meta-data

CMS
Analytics
Dataset user access information (e.g. : Dashboard
frequency, which replicas, CPU used) y Massive repository of Grid jobs details (and more)
Site DB/

REBUS

Site pledges, deployed
resources, people

Structured data on a variety of CMS Computing activities

+ stored across multiple data services, available via data service APls
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Data transfer service and data replica catalog

A c?“si wiki content as a knowledge graph that could
nalytics 2 mapped to user activities and physics interests
Dashboard

Tickets
(and more)

nfrastructure issues reporting/tracking, Savannah,
GGUS, activity-based ELOGs, topical e-groups, ..

400 different fora, several yrs of user discussions, “social
data-mining” aspects of collaboration-level research

Physics meta-data

CMS events calendar, activity planning

docs, list of major conferences, etc
calendars

Dataset user access information (e.g.
frequency, which replicas, CPU used)

assive repository of Grid jobs details (and more)

Site DB/
REBUS

It serves all data sources to users, its logs may
be mined to extract info on user activities

Site pledges, deployed
resources, people

[ semi-structured ]

Structured data on a variety of CMS Computing activities

+ stored across multiple data services, available via data service APls

Plenty of unstructured information in the CMS Computing ecosystem

+ hard to process but very diverse and potentially very rich!
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[ semi-structured ] Site pledges, deployed
resources, people

> mapped to user activities and physics interests

Dataset user access information (e.g. Dashioar]

frequency, which replicas, CPU used) assive repository of Grid jobs details (and more)

It serves all data sources to users, its logs may
be mined to extract info on user activities

Tckets
(and more)
nfrastructure issues reporting/tracking, Savannah,
GGUS, activity-based ELOGs, topical e-groups, ..

Structured data on a variety of CMS Computing activities

+ stored across multiple data services, available via data service APls

Plenty of unstructured information in the CMS Computing ecosystem

+ hard to process but very diverse and potentially very rich!
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Long-term goal (2-3 years)
+ build adaptive data-driven models of CMS {Data/Workflow} Management

+ make predictions: predict future behaviours from measurements of past
performances

Short-term goal (in Run-2)
+ support CMS Computing operations

e.g. improvements in the use of computing resources

How?

+ deeper understanding of CMS “data” from computing operations in Run-1/LST
a by-product, but it has a huge value in itself

Why adaptive modelling?

+ models of the past aren’t going to apply to the future for long..
+ only adaptive modelling will give us confidence and predictive power in the long term

Bottom-up approach in selecting the pilot projects
+ focus on clear problem(s) formulation
+ well-defined, self-contained, independent pilot projects
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Predict popularity of new datasets "=

DCAFPilot (Data and Computing Analysis Framework)

+ a pilot project to understand metrics, analysis workflow, necessary functionalities
(and possible technology choices) of the machinery needed to attack this problem

CMS data
services

DCAF
MachinelLearning

Front-end

___________________ . AdaBoost

Bagging
GauusianNB

<—>»| * KNN

dataframe <+ . LDA
<>

<«—» = PCA

. SGD

___________________ + SVC
RF

MongoDB « VW
cache

“““““““ - \4

Probability,DatasetName
| CMS > 0.97, /Prim1/Proc1/TIER1
D 0.12, /Prim2/Proc2/TIER2

DCAF core

YVvy

Computing
infrastructure
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DCAF PiIOt Dataframe generator toolkit:

collects/transforms data from CMS
data services (structured data only,

here) and extract necessary bits for ML algorithms (python / R
datasets under study.

code) for data analysis

CMS data
services

DCAF
MachinelLearning

Front-end

AdaBoost
Bagging
GauusianNB

> ° KNN
dataframe <+ . LDA

> DCAF core

YVvy

<«—| = PCA
- SGD

SvC

RF

MongoDB « VW
cache

Probability,DatasetName
t___ CMS “ 0.97, /Prim1/Proc1/TIER1

0.12, /Prim2/Proc2/TIER2

MongoDB used

Computing

. for internal cache
infrastructure
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Live data
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1. Data collection
2. Data transformation into suitable format for ML

3. The ML model:

+ use classification or regression techniques

+ train and validate your ML model

4. Generate new data and transform it (similar to step #2)
5. Apply your best model to new data to make prediction
6. Verity prediction with PopDB once metrics become available
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Some figures from a dry run of the machinery:

Data collection:

+ Queried 5 data services (4 DBS instances used), 10 APls used

+ Internal cache fed with ~220k datasets, ~900 release names, 500+ SiteDB
entries, 5k people’s DNs

+ ~800k queries placed overall

+ Anonymisation and factorisation via internal cache

Data frame:

+ constructed out of 78 variables, made of 52 data-frame files, ~600k rows

+ each file is worth 1 week of CMS meta-data (~600kB gzipped) and has ~1k
popular datasets with a ~1:10 ratio of popular vs unpopular randomly mixed)
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Preliminary observations

statistical variables:

accuracy, precision, recall and F1 scorers

o # accesses > 10
classifiers (python) Classifier
) accuracy precision recall
\ Random Forest . 0 0]

SGDClassifier
Linear SVC
i lEES  Vowpal Wabbit

y xgboost

eXtreme Gradient

Boosting, a parallel

gradient boosting
tree solution
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DCAFPilot stands as a good proof-of-concept

+ Caution in drawing conclusion is a must, of course
+ Plenty of work to do (avoid known ML obstacles, work on defining metrics, etc)

More projects are being cooked under similar approaches..

+ Popularity is just one starting example

+ Other aspects of CMS Computing may benefit from analytics approaches
+ Updates at CHEP'167?

Remembering the goal:

+ short-term: understand our “data” from Run-1/LS1 and improving our way to
do computing operations and use distributed resources

+ long-term: a data-driven adaptive model of CMS Computing
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