

Exploiting CMS data popularity to model the evolution of data management for Run-2 and beyond

V. Kuznetsov, T. Wildish, D. Giordano, N. Magini, T. Boccali, M. Neri, M. Girone, <u>D. Bonacorsi</u>

April 13th, 2015

21st International Conference on Computing in High Energy and Nuclear Physics CHEP2015 Okinawa Japan: April 13 - 17, 2015

Introduction

CMS collects data on datasets "**popularity**"

- i.e. most frequently accessed replicas
- in terms of # accesses and CPU hours used

The data placement is evolving towards a less static model

- ◆ <u>add</u> replicas of *existing* datasets that appear to be <u>most</u> popular
- remove replicas of existing datasets that appear to be least popular

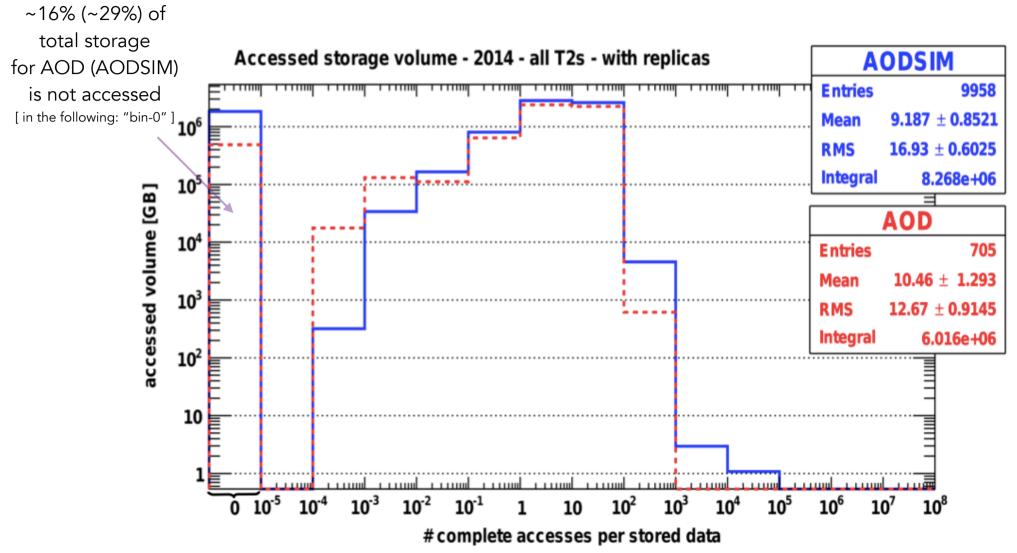
See another CHEP'15 talk

 C. Paus et al, "Dynamic Data Management for the Distributed CMS Computing System" (earlier in this same session)

We discuss here a complementary, looking-forward approach

 problem formulation: predict which datasets will become popular once they will be available on the Grid for distributed analysis

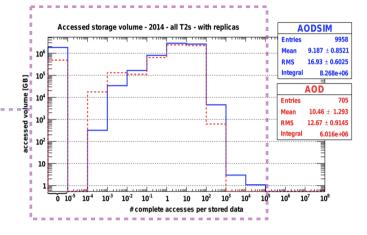
CMS data popularity in 2014

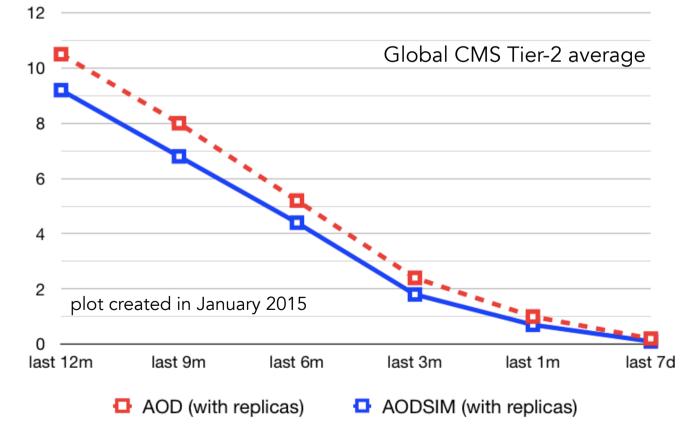


Data popularity information is rich in content and in potential correlations

in particular the "unpopular" fraction is most interesting

A blind average





Not too bad?

- Maybe..
- But there is a "really unpopular data" bin whose content has been just averaged..
- What's in it?

Really unpopular data

AODSIN 9.187 ± 0.852 16.93 ± 0.6025

AOD

8.268e+06

10.46 ± 1.293

12.67 ± 0.9145

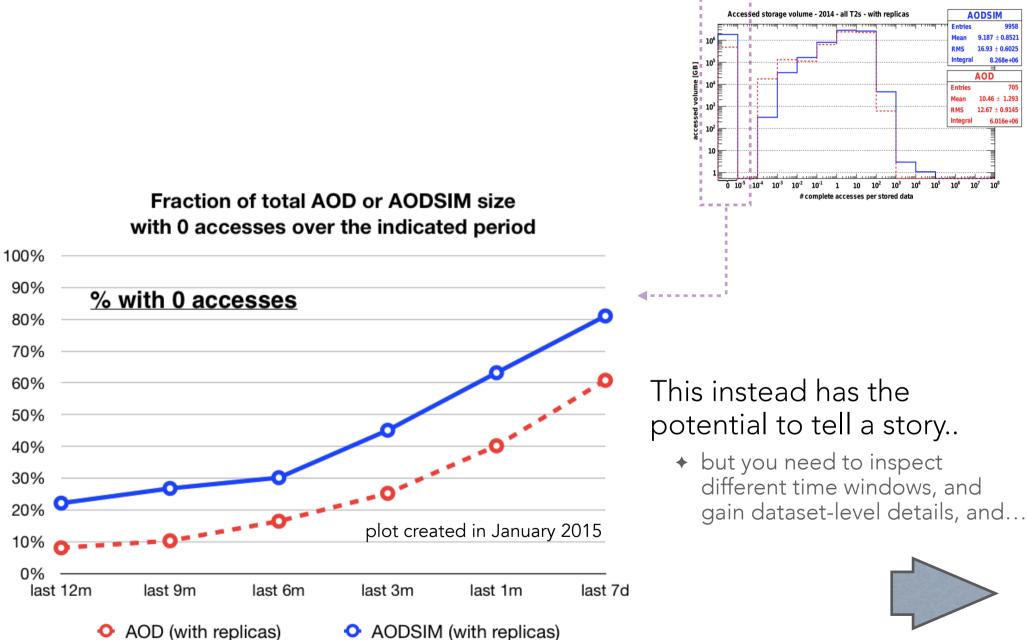
6.016e+06

RMS

Entrie

RMS

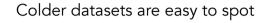
["bin-0" = data volume with 0 accesses]

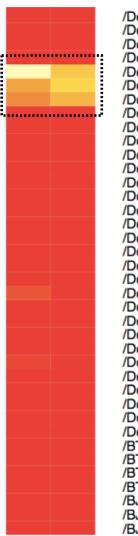


CHEP'15, Okinawa, Japan - 13-17 April 2015

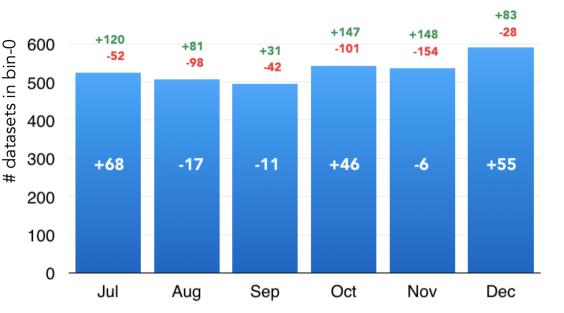
Dataset-oriented and incremental view

["bin-0" = data volume with 0 accesses]

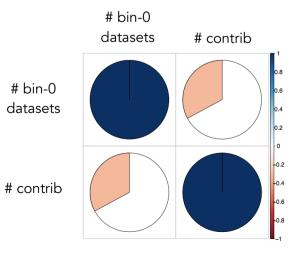




/DoublePhoton/Run2012D-22Jan2013-v1/AOD /DoublePhoton/Run2012C-PromptReco-v2/AOD /DoublePhoton/Run2012C-22Jan2013-v2/AOD /DoublePhoton/Run2012B-22Jan2013-v1/AOD /DoubleMuParked/Run2012D-22Jan2013-v1/AOD /DoubleMuParked/Run2012C-22Jan2013-v1/AOD /DoubleMuParked/Run2012B-22Jan2013-v1/AOD /DoubleMuParked/Run2012A-22Jan2013-v1/AOD /DoubleMu/Run2012D-PromptReco-v1/AOD /DoubleMu/Run2012D-16Jan2013-v2/AOD /DoubleMu/Run2012C-PromptReco-v2/AOD /DoubleMu/Run2012C-EcalRecover 11Dec2012-v1/AOD /DoubleMu/Run2012C-24Aug2012-v1/AOD /DoubleMu/Run2012B-13Jul2012-v4/AOD /DoubleMu/Run2012A-recover-06Aug2012-v1/AOD /DoubleMu/Run2012A-22Jan2013-v1/AOD /DoubleMu/Run2012A-13Jul2012-v1/AOD /DoubleMu/Run2011B-19Nov2011-v1/AOD /DoubleMu/Run2011A-08Nov2011-v1/AOD /DoubleElectron/Run2012D-PromptReco-v1/AOD /DoubleElectron/Run2012D-22Jan2013-v1/AOD /DoubleElectron/Run2012D-16Jan2013-v1/AOD /DoubleElectron/Run2012C-PromptReco-v2/AOD /DoubleElectron/Run2012C-EcalRecover 11Dec2012-v1/AOD /DoubleElectron/Run2012C-24Aug2012-v1/AOD /DoubleElectron/Run2012C-22Jan2013-v1/AOD /DoubleElectron/Run2012B-22Jan2013-v1/AOD /DoubleElectron/Run2012B-13Jul2012-v1/AOD /DoubleElectron/Run2012A-recover-06Aug2012-v1/AOD /DoubleElectron/Run2012A-22Jan2013-v1/AOD /DoubleElectron/Run2012A-13Jul2012-v1/AOD /BTag/Run2012D-22Jan2013-v1/AOD /BTag/Run2012C-22Jan2013-v1/AOD /BTag/Run2012B-22Jan2013-v1/AOD /BTag/Run2012A-22Jan2013-v1/AOD /BJetPlusX/Run2012D-22Jan2013-v1/AOD /BJetPlusX/Run2012C-22Jan2013-v1/AOD /BJetPlusX/Run2012B-22Jan2013-v1/AOD



Anti-correlation (despite tepid) between # unpopular datasets and # CMS contributions to conf/ws



What if...

All this can be done on data from the *past* to act in the *present*.

What if we could learn from the *past* and perform predictions for *future* datasets?

This e.g. will tell us which data to fill fast caches in front of disk systems with

in computing system in O(5-10) yrs from now

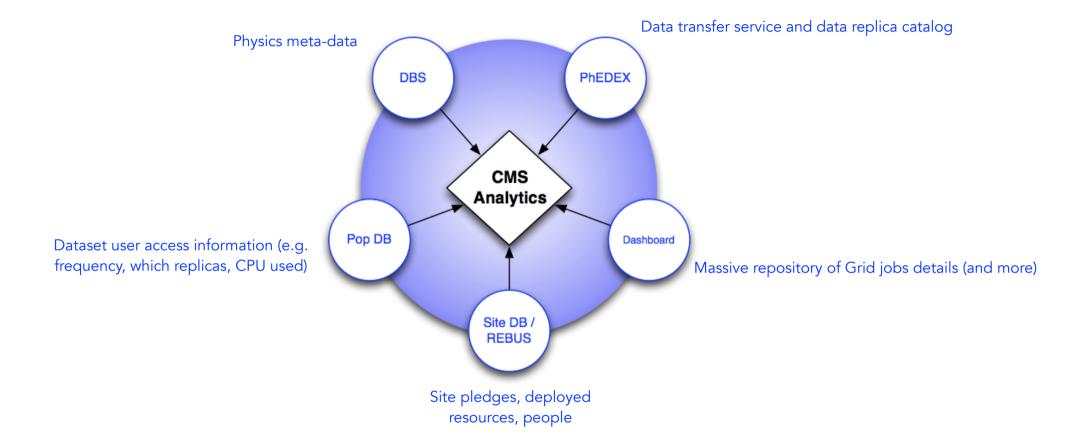
Plenty of data from computing operations in Run-1 and LS1 are available. This data is all **archived**, but **rarely** (or never) **accessed** by anyone

- e.g. transfers, job submissions, site performances, releases logs, analysis performances,
 PhEDEx DB, WMAgent logs, Dashboard, SiteDB, SSB, etc...
- + we basically monitor to debug in near-time, not to analyse what happened in the past
- + we never fixed holes in monitoring data, never validated (most of) them with a decent care
 - not polished and not complete/coherent \Rightarrow not explorable \Rightarrow not exploitable in its current form

Variety (and veracity) are the Big Data V's that matter most here

- (<u>Volume</u> not negligible, but manageable <u>Velocity</u>: real-time is not a must)
- + <u>Variety</u>: very irregular data set: structured, semi-structure and unstructured data
- + <u>Veracity</u>: data integrity and the ability to trust them to make decisions is important

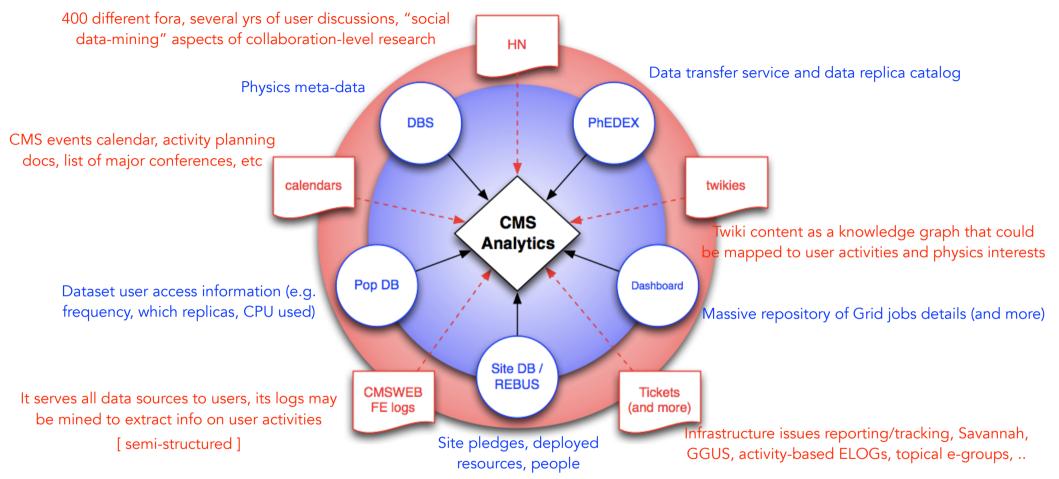
Structured data...



Structured data on a variety of CMS Computing activities

+ stored across multiple data services, available via data service APIs

Structured and Unstructured data



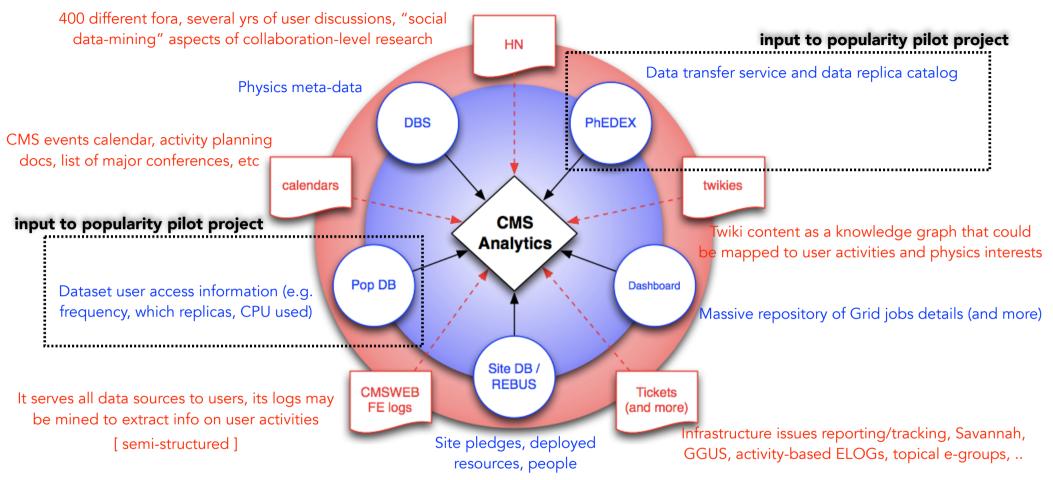
Structured data on a variety of CMS Computing activities

stored across multiple data services, available via data service APIs

Plenty of **unstructured** information in the CMS Computing ecosystem

hard to process but very diverse and potentially very rich!

Structured and Unstructured data



Structured data on a variety of CMS Computing activities

stored across multiple data services, available via data service APIs

Plenty of **unstructured** information in the CMS Computing ecosystem

hard to process but very diverse and potentially very rich!

CMS Analytics

Long-term goal (2-3 years)

- + build adaptive data-driven models of CMS {Data/Workflow} Management
- make predictions: predict future behaviours from measurements of past performances

<u>Short-term</u> goal (in Run-2)

- support CMS Computing operations
 - e.g. improvements in the use of computing resources

How?

- + deeper understanding of CMS "data" from computing operations in Run-1/LS1
 - a by-product , but it has a huge value in itself

Why **adaptive** modelling?

- models of the past aren't going to apply to the future for long..
- + only adaptive modelling will give us confidence and predictive power in the long term

Bottom-up approach in selecting the **pilot projects**

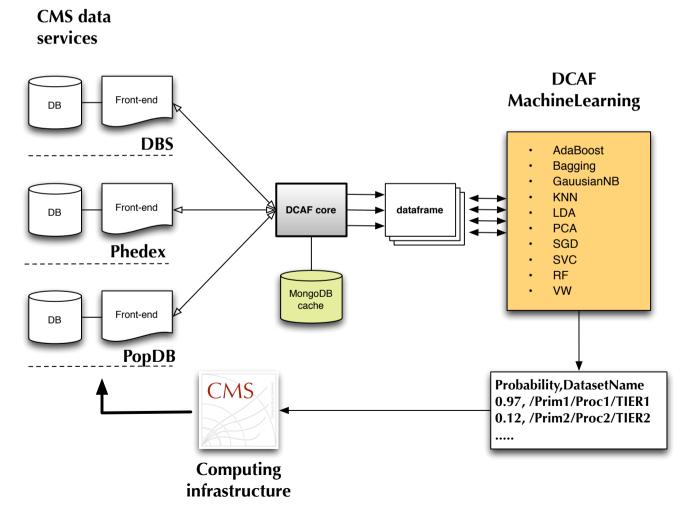
- focus on clear problem(s) formulation
- well-defined, self-contained, independent pilot projects

One example:

Predict popularity of <u>new</u> datasets [%]

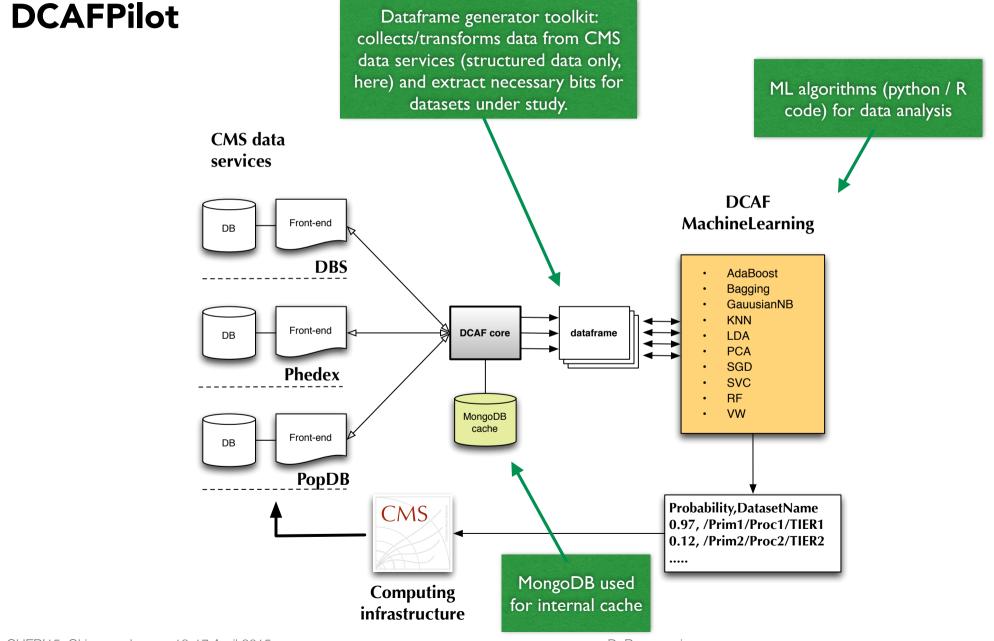
DCAFPilot (Data and Computing Analysis Framework)

 a pilot project to understand metrics, analysis workflow, necessary functionalities (and possible technology choices) of the machinery needed to attack this problem

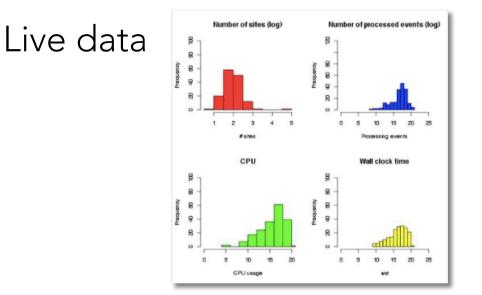


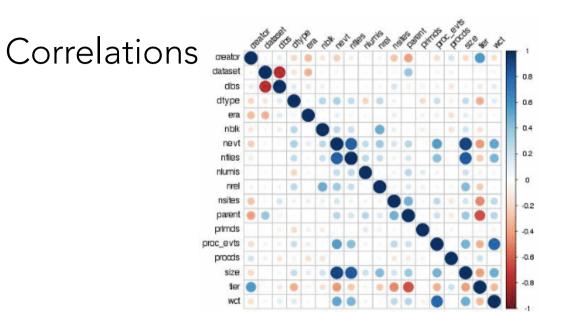
One example:

Predict popularity of <u>new</u> datasets



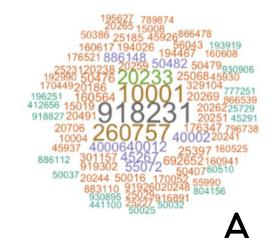
Visualise the data-frame





Different dataset popularity metrics

A. by # users accessing itB. by total CPU used to process it



 $\begin{array}{c} \begin{array}{c} 25397\ 441975\\ 930743\ 919302\ 160525\\ 176734\ 193008\ 45937\ 290821\\ 15008\ 1766521\ 300889\ 56037\\ 8787316\ 456666\ 40002\ 25601\ 194008\\ 196766\ 20006\ 40012\ 45930\ 290868\\ 176518\ 315832\ 175346\ 50407\\ 20262\ 5076\ 176347\ 692652\ 20269\ 50011\\ 196756\ 301001\ 45\ 26\ 729309\ 170169\\ 170299301001\ 45\ 26\ 729309\ 170169\\ 170299301001\ 45\ 26\ 729309\ 170169\\ 56031\ 50476\\ 301182\ 20238\ 290765\ 20186\\ 301182\ 20238\ 290765\ 20186\\ 50193\ 5990\ 29405\ 40006\ 25576\ 19413691\\ 50386\ 17001\ 125729\ 5913196582\\ 5930\ 25497\ 170052\ 191365\ 9222453\\ 883110\ 20145929246\\ 9382813\ 55902\ 20248\ 929281\ 194007\\ 19676925088\ 52277\ 96760\\ 5876257\ 854822\\ 176504\ 841841\end{array}$

From data collection to prediction

1. Data collection

Data transformation into suitable format for ML The ML model:

- ✤ use <u>classification</u> or <u>regression</u> techniques
 - the former allows to predict real values of metrics (e.g. # accesses)
 - the latter allows only to classify into categories (e.g. popular or unpopular)
- train and validate your ML model
 - split data into train and validation sets
 - ~600K rows in the 2014 dataset: Jan-Nov used as a train set, Dec used as the validation set
 - estimate your predictive power on the validation set

4. Generate new data and transform it (similar to step #2)5. Apply your best model to new data to make prediction6. Verify prediction with PopDB once metrics become available

DCAFPilot in numbers

Some figures from a dry run of the machinery:

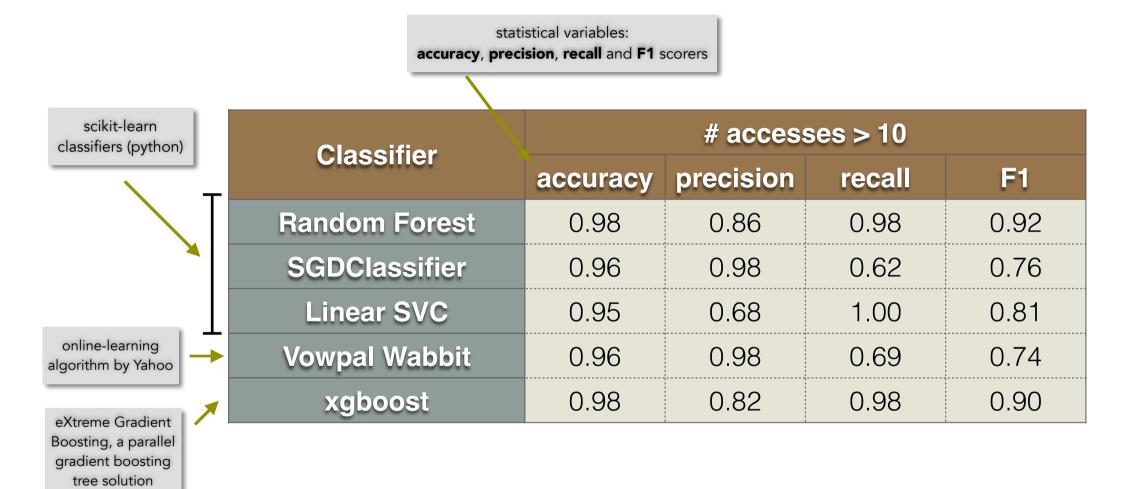
Data collection:

- Queried 5 data services (4 DBS instances used), 10 APIs used
- Internal cache fed with ~220k datasets, ~900 release names, 500+ SiteDB entries, 5k people's DNs
- ◆ ~800k queries placed overall
- Anonymisation and factorisation via internal cache

Data frame:

- constructed out of 78 variables, made of 52 data-frame files, ~600k rows
- each file is worth 1 week of CMS meta-data (~600kB gzipped) and has ~1k popular datasets with a ~1:10 ratio of popular vs unpopular randomly mixed)

Preliminary observations



A good start!

DCAFPilot stands as a good proof-of-concept

- Caution in drawing conclusion is a must, of course
- Plenty of work to do (avoid known ML obstacles, work on defining metrics, etc)

More projects are being cooked under similar approaches..

- + **Popularity** is just one starting example
- Other aspects of CMS Computing may benefit from analytics approaches
- Updates at CHEP'16?

Remembering the goal:

- <u>short-term</u>: understand our "data" from Run-1/LS1 and improving our way to do computing operations and use distributed resources
- <u>long-term</u>: a data-driven adaptive model of CMS Computing