
ATLAS COMPUTING ON CSCS HPC
A. Filipcic1, S. Haug2, M. Hostettler2, R. Walker3, M. Weber2

1 Jozef Stefan Institute, Slovenia 2 AEC, University of Bern, Switzerland 3 Ludwig Maximilian University of Munich, Germany

Contact: michi.hostettler@cern.ch

ABSTRACT
The Piz Daint Cray XC30 HPC system at CSCS, the Swiss National Supercomputing centre, was in 2014 the highest ranked European system on TOP500,
also featuring GPU accelerators. Event generation and detector simulation for the ATLAS experiment have been enabled for this machine. We report on the
technical solutions, performance, HPC policy challenges and possible future opportunities for HEP on extreme HPC systems. In particular a custom made
integration to the ATLAS job submission system has been developed via the Advanced Resource Connector (ARC) middleware. Furthermore, some GPU
acceleration of the Geant4 detector simulations has been implemented to justify the allocation request for this machine.

CHALLENGE AND SOLUTIONS
Current distributed ATLAS computing is based
on dedicated x86 Linux clusters of the WLCG
specifically set up to meet the needs of the
ATLAS software stack, which process jobs
from a global job database. This concept is quite
different from common self-contained, optimized
HPC applications run manually by specific users
on specific machines.

The minimal prerequisites to run ATLAS jobs
on a HPC system, and our respective solutions,
are:
• Access to ATLAS Software
⇒ Local relocated software/CVMFS copy

• Run ATLAS software
⇒ x86-based HPC systems: Minor chan-
ges to the Software environment done by
modified job submission scripts

• Multi-Threading and Parallelization
⇒ AthenaMP (multi-threaded jobs, event-
level parallelism) detector simulation, par-
allel single-node jobs

• Integration into the Production ANd Dis-
tributed Analysis (PanDA) system
⇒ ARC-CE SSH submission back-end
(see poster 161 „The ATLAS ARC ssh back-
end to HPC”).

ATLAS JOB HANDLING
For full details, see poster 161.

LHEP, University of Bern

LHEP ARC-CE frontend
ce03.lhep.unibe.ch

 - A-REX
 - LDAP
 - GridFTP

CSCS HPC system

CERN

CVMFS servers
 - ATLAS software

HPC Login node
 - SSH access
 - SLURM job submission
 - Access to /scratch/
 - No persistent services

HPC Worker nodes
 - /scratch/ shared
 - managed by 
SLURM/ALPS (Cray)
 - limited internet 
accesss

Job submission 
via SSH

SLURM/ALPS
job control

Shared /scratch/ 
file system 

(CSCS managed)

PanDA Job Database
panda.cern.ch

- ATLAS workloads

Job submission 
via ARC

Session directory: 
SSHFS mount

ARC Control Tower

PanDA workloads

ATLAS 
Storage 

Elements

HTTP / 
rsync

COMPILER PERFORMANCE
We compared the wall clock time of detector sim-
ulation jobs with the Geant4 libraries compiled
by different compilers for different RNG seeds.

Precompiled Optimized gcc CrayCC

880s 834s 1219s

879s 833s 1208s

887s 840s 1178s

RESULTS
We have successfully run ATLAS detector simulation pro-
duction jobs on the „Piz Daint” integration system „Todi”
at CSCS. The test on 50 nodes (800 CPU cores) over ~6
months contributed ~500000 CPU-hours towards ATLAS
Production. This is roughly the equivalent of one of the ded-
icated Tier-2 ATLAS clusters in Switzerland (CSCS-LCG2
at CSCS and UNIBE-LHEP at the University of Bern).

CPU SCALING
ATLAS Simulation can use event-level paral-
lelism (using AthenaMP) to efficiently use all
the 16 available CPU cores of a compute node
with a memory footprint significantly smaller
than 16 parallel single-threaded jobs.
We observed a near-perfect linear scaling with
an offset of ~30min due to initialization and fi-
nalization.

1 2 4 8 16

1

10

Number of Threads
W

al
lC

lo
ck

R
un

tim
e

[h
] Job run time

Fit, 10.72h/x+0.42h

The peak memory usage when processing 100
events was ~6GiB, which is significantly smaller
than the available 32GiB per node.

GPU CODE TESTS
After successful integration of multi-threaded
CPU workloads, means for adding GPU code to
the ATLAS Geant4-based detector simulation
codebase without recompiling the full ATLAS
software stack were evaluated. Replacing the
internal Geant4 random number generator by a
cuRAND-GPU-based implementation showed a
~5% speedup.

We conclude that in the future, computationally
heavy parts of key software might be dynamically
replaced by equivalent GPU counterparts on hy-
brid HPC systems.

CONCLUSION AND OUTLOOK
We have developed a solution for running the
detector simulation part of ATLAS Produc-
tion on general-purpose shared HPC systems.
Apart from CSCS, a similar approach is also
used on SuperMUC (Germany), Pi (China) and
Hydra (Germany, see poster 153).

In the future, running bulk ATLAS Production
jobs on a few big HPC machines might be a cost
efficient, complementary approach to running on
many distributed WLCG clusters.


