Accelerating Analysis with SciDB

Lisa Gerhardt NERSC, LBNL Yushu Yao NERSC, LBNL Carlos Faham LBNL

April 16, 2015

Experimental Data

- Vast majority of experimental data is array-like
 - Time series data from detectors (LHC, IceCube)
 - Image data from satellites and light sources
- TBs to PBs of data, that is written once and read many times
- Reduced, aggregated, analyzed
- Strong need for a tool that can handle this kind of heavy workload

SciDB

- Array DB management system and analytic platform
- Shared nothing architecture
- Scalable out to 1,000s of processors and TBs PBs of data
- Data is never overwritten, previous versions can be recovered
- Open source made by Paradigm4
 - Enterprise version with a few more features

SciDB Architecture

SciDB Structure

Chunk 1

0.02 0.01 0.01 0.02 0.01 0.01 0.5 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.02

Chunk 2

0.02	0.01	0.01	0.02	
0.01	0.01	0.5	0.02	
0.01	0.02	0.01	0.01	
0.02	0.01	0.02	0.02	

Arrays are chunked

Chunk 3

0.02	0.01	0.01	0.02
0.01	0.01	0.5	0.02
0.01	0.02	0.01	0.01
0.02	0.01	0.02	0.02

Chunk 4

	_		
0.02	0.01	0.01	0.02
0.01	0.01	0.5	0.02
0.01	0.02	0.01	0.01
0.02	0.01	0.02	0.02

Each chunk is stored on a different instance

0.02	0.01	0.01	0.02
0.01	0.01	0.5	0.02
0.01	0.02	0.01	0.01
0.02	0.01	0.02	0.02

0.02	0.01	0.01	0.02
0.01	0.01	0.5	0.02
0.01	0.02	0.01	0.01
0.02	0.01	0.02	0.02

Data is scanned from array storage on all instances and streamed into and out of each operator one chunk at a time. "Hot" chunks are kept in memory.

Uploading Data

- Load data as a flat array
 - Supports binary, csv, tsv, SciDB text format
 - Re-dimension into desired array shape
- Can do a parallel or single load
 - Manually split data into pieces and upload to each instance
- Choose commonly used data attributes to serve as array dimensions

SciDB Case Study: LUX

Time

Electric field

Searching for dark matter with 370 kg of liquid Xenon

Composition of the Cosmos Time-projection chamber Photomultiplier tubes S₂ Liquid xenon Drift time indicates Titanium depth cryostats S1 Photomultiplier tubes Ionization electrons (e-)

Ultraviolet scintillation photons

Precursor to LZ, chosen by DOE as one of three next generation dark matter detectors

LUX's SciDB Setup at NERSC

- Proof of concept with 32 instances spread over 16 nodes
 - Work with LUX to develop representative solutions
- Uploaded 10 TB of inaugural data
- 83 Million events, 600 million pulses
- Dimension of array:
 - Unique timestamp
 - Pulse type
 - Pulse number
- Roughly 50 attributes

Problem 1: Detector Stability

- Look at variation in measured electron pulse size over time
- Task: Histogram reported pulse sizes in each 5hour window, fit it with a Gaussian, and return a plot of Gaussian mean versus time

How it's Done

 First, pull out all single electron pulse types and toss the rest of the attributes

```
filter(project(pulse_array,pulse_size),
pulse_type==single_electron)
```

- Gaussian fit needs a histogram, so we can leverage SciDB's regridding functionality
- Regrid to clump time into 5-hour window size and to get a count of pulse_size in each pulse_size bin
 - Automatic count functionality is folded into regridding

Results

- Result is ~2000 arrays that are time window histograms
- Spun over 200 M pulses (including scipy Gaussian fits for each slice) in 7 minutes

Problem 2: Search for Signal

 Task: Find every event with a small initial pulse followed by larger pulse within 1 ms

The Beauty of Crossing

 Produces an array with every possible combination of the two input arrays

```
cross(small_pulse, big_pulse)
```

- Split array into two sub arrays
 - 300,000 entries with small peaks
 - 1,000,000 entries with large peaks
- Use cross to join these two arrays
- Filter events that have a time difference of 1 ms or less
- Took only 4 hours to search 100 days of data for signal candidates

SciDB Scales Well

Production Level SciDB Cluster at NERSC

Wald cluster

- 12 worker nodes + 2 also serve as login nodes
- 20-core, 64 GB RAM, IvyBridge processor
- Roughly ~10 other groups, with space for more
- Also plans to run at scale on Edison
- Multiple Science Domains:
 - Astronomy, Climate, Bio-imaging, Genomic,
 HEP

https://www.nersc.gov/users/computational-systems/testbeds/scidb/

Strengths / Weaknesses of SciDB

The Not-So-Good

- Can't read data from native formats
 - Loading data can take a while, though it can do it in parallel
- Streaming analysis
 - Inefficient at outputting lots of data
- Somewhat high threshold
 - Not everyone thinks in array joins

The Good

- Filtering and aggregating
- SQL-like joins
- Lots of optimized functions
 - Sampling
 - Matrix operations (ScaLAPACK)
 - Statistics
 - User designed functions
- Parallel architecture that is transparent to the user

National Energy Research Scientific Computing Center

SciDB Test Cases at NERSC

Big Data Tasks in SciDB@NERSC Projects

	Bio- Informatics	Climate Simulation	Odetta	Variable Stars	OpenMSI	SDSS Spectrum Analysis
Querying	V	V	~	V	~	V
Density estimation						
Regression				V		~
Classification				V		
Dimension reduction	V		V		V	
Outlier detection						
Clustering	V					
Time series analysis		~		~		
Feature selection & causality						
Fusion and matching					~	~

Y. Yao

Creating an Array

Create array ZOO <monkey:int64 zebra:int64

elk:int64> [cagenum=0:100,10,0, distemper=0:*,2,0]

Attributes: monkey, zebra, elk

Dimensions: cagenum, distemper (can be non-ints)

Dimension size: 0:100 (* unbounded)

Chunk size: 10

Chunk overlap: 0

Many Interfaces

- Can talk directly to SciDB with special language filter(between(ZOO,1,null,20,null),zebra=0))
- Robust python and R interface

R: subset(ZOO[1:20], "zebra == 0")

Metabolite Atlases

- Profile molecular composition of metabolic byproducts
- Many different metabolites and apparatus produce
 10s of GBs of data a day
 - At each timestep the intensity of mass spectrum reading for each M/Z is recorded
- Want to use SciDB to compile an atlas of measurements that is searchable via web portal

Common Uses

Picture from Y. Yao et al., Computing in Science & Engineering, May 2015

