215t International Conference on Computing in High Energy and Nuclear Physics CHEP2015 Okinawa Japan: April 13 - 17, 2015

LHC6 A his*l'or'lI based
o D||—] /\G estimation for LHCb job

requirements

LHChe GRID SOLUTION

Nathalie Rauschmayr
on behalf of LHCb Computing

13th April 2015



Introduction

How long will a job run ‘
and how much memory L

L)y
might it need? j‘

-

Production Manager

» Underestimation: Job is killed. We lose the whole
Jjob!

» Overestimation: What to do with the remaining
time
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. Introduction

» Well studied problem in High Performance
Computing

» Some recent studies in HEP:
» CMS, WLCG multicore task force

Multicore jobs: good runtime estimates allow better
scheduling

ik
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Introduction

A lot of job meta data from past jobs: LHCb
bookkeeping
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A lot of job meta data from past jobs
bookkeeping
» Hardware specific:
» CPU model
» HS06
» Cache size
» RAM Size
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o)

Our Proposal

Automate the prediction procedure based on prior jobs
and given job meta data

&

Supervised Learning

e
o
® \\

zr

Reduce false estimates
Simplify Production Manager's life
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) Our Proposal

RunDB
Bookkeeping

4

Workload Analysis

Find similar
productions
Detect most important features

Update

Prediction Formula <:L|
</ i Il

%‘{} Pm:&gic" E{)Submi'rubunchofjobs :> Obtain values

from finished
jobs

% N. Rauschmayr 6




. Workload Analysis - Reconstruction

Normalized CPU time per event:

CPUTimexHEPSPECValue
NumberOfEvents

Approximate a Gaussian distribution:
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N. Rauschmayr 7



. Workload Analysis - Reconstruction

Normalized CPU time per event:

CPUTimexHEPSPECValue
NumberOfEvents

Approximate a Gaussian distribution:

VHED]
N. Rauschmayr 7



Workload Analysis - Reconstruction

Normalized CPU time per event:

CPUTimexHEPSPECValue
NumberOfEvents

Approximate a Gaussian distribution:

Reprocessing 2011

6,000 - B

4,000 |- E

Frequency

2,000 - E

0 10 20 30
CPU-work per event in HS06.s

N. Rauschmayr 7



Workload Analysis - Reconstruction

Normalized CPU time per event:

CPUTimexHEPSPECValue
NumberOfEvents

Approximate a Gaussian distribution:
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Workload Analysis - Reconstruction

Comparison of 2011 and 2012 workloads:

Reprocessing 2011

" , Reprocessing 2012
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Workload Analysis - Stripping

Stripping: Sort reconstructed events into different
output streams
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Detect Most Important Features

Certain well known correlations:
» Beam energy versus event size
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Detect Most Important Features

Certain well known correlations:
» Beam energy versus event size

» Pileup versus complexity of reconstruction

Example: Reconstruction (2011 versus 2012)

Normalized Time Per Event
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0®

A history-based estimation for LHCb
job requirements

E

Detect Most Important Features

Avoid overfitting...
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Detect Most Important Features

Avoid overfitting...

Linear regression:

runtime per event = ©g + ©1x1 + O2X2 + O3X3 + O4X4 + Os5X5 + Op X4
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Detect Most Important Features

Avoid overfitting...

Linear regression:

runtime per event = ©g + ©1x1 + O2X2 + O3X3 + O4X4 + Os5X5 + Op X4

Normalize

File Size
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Detect Most Important Features

Avoid overfitting...

Linear regression:

runtime per event = ©g + ©1x1 + O2X2 + O3X3 + O4X4 + Os5X5 + Op X4

Normalize  Find best ©

File Size 0.80
Avg. Event Size 0.19
HEPSPEC -0.97

Number Of Events -133
Avg. Luminosity 0.67
Avg. Multiplicity  -0.08
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Detect Most Important Features

Avoid overfitting...

Linear regression:
runtime per event = ©g + ©1x1 + O2X2 + O3X3 + O4X4 + Os5X5 + Op X4

Normalize  Find best © Remove small ©

File Size 0.80 1.05
Avg. Event Size 0.19 X

HEPSPEC -0.97 -0.97

Number Of Events -133 -155

Avg. Luminosity 0.67 0.59
X

Avg. Multiplicity  -0.08

N. Rauschmayr



Detect Most Important Features

Avoid overfitting...

Linear regression:

runtime per event = ©g + ©1x1 + O2X2 + O3X3 + O4X4 + Os5X5 + Op X4

Normalize  Find best © Remove small ©

File Size 0.80
Avg. Event Size 0.19
HEPSPEC -0.97

Number Of Events -133
Avg. Luminosity 0.67
Avg. Multiplicity  -0.08

1.05
X
-0.97
-1.55
0.59
X
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Evaluate RMSE
2.16

A 4

22% better than
naive estimator
like MLE



° Detect Most Important Features

Stripping Jobs:

Normalize  Find best © Remove small ©

File Size -0.19
Avg. Event Size 0.70
HEPSPEC 0.19

Number Of Events 0.23
Avg. Luminosity  -0.08
Avg. Multiplicity  0.003
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Evaluate RMSE

0.54

A 4

25% better than
naive estimator
like MLE



Supervised Learning

Supervised learning: there exist some labelled training
data

RunDB
Bookkeeping

Workload Analysis
Find similar
preductions
Detect most important features

Update ——

/i;;vdm:)nFm‘mu\n Cﬁ‘ T
yd \
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P'WE?‘NK = = from finished /
=

Jobs e

What if only little amount of fraining data available?
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. Supervised Learning

1. Find similar jobs which have already run
2. Predict requirements for the next k jobs using either (MLE/LR)

3. When k jobs have finished, update prediction formula with the
new results obtained

4. Repeat step 2 and 3 until all jobs have finished

k Jobs k Jobs
—_— —_—
Training Data New Test Data

ek
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Supervised Learning

Root Mean Squared Error:

\/Zi":o(difference,»)2

n ’

where difference is predicted minus real values
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. Conclusion

» Historical data can help us to predict future jobs

» Certain meta data are strongly correlated with
runtime
» Improved prediction up to 25%

» Both models (naive estimator and linear regression)
can be easily implemented in Production and support
the Production Manager in his work

ﬁagcle]
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Questions
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Backup Slides
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Backup Slides

Stripping Jobs: Memory and Runtime per Event
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Reconstruction: Memory Footprint
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Reprocessing 2012

Maximum Likelihood 1.6 GB
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Backup Slides

Stripping: Memory Footprint
» Change from POOL to ROOT

Reprocessing 2011 Reprocessing 2012
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