

A history-based estimation for LHCb job requirements

Nathalie Rauschmayr on behalf of LHCb Computing

13th April 2015

How long will a job run and how much memory might it need?

Production Manager

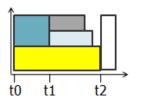
- Underestimation: Job is killed. We <u>lose</u> the whole job!
- Overestimation: What to do with the remaining time

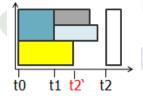
- Well studied problem in High Performance Computing
- Some recent studies in HEP:
 - CMS, WLCG multicore task force

Multicore jobs: good runtime estimates allow better scheduling

- Well studied problem in High Performance Computing
- Some recent studies in HEP:
 - CMS, WLCG multicore task force

Multicore jobs: good runtime estimates allow better scheduling





- ► Hardware specific:
 - CPU model
 - ► H506
 - Cache size
 - ► RAM Size

- ► Hardware specific:
 - ► CPU model
 - ► H506
 - Cache size
 - ► RAM Size
- ► Input File
 - Size
 - Number of events
 - Run number (LHCb RunDB)
 - ► Trigger Configuration Key
 - Avg. Multiplicity
 - Avg. Luminosity ...

- ► Hardware specific:
 - CPU model
 - ► HS06
 - Cache size
 - ► RAM Size
- ▶ Input File
 - Size
 - Number of events
 - ► Run number (LHCb RunDB)
 - ► Trigger Configuration Key
 - Avg. Multiplicity
 - Avg. Luminosity ...

- Job
 - Start/End time
 - ▶ Site
 - Worker Node
 - Memory Footprint
 - Runtime

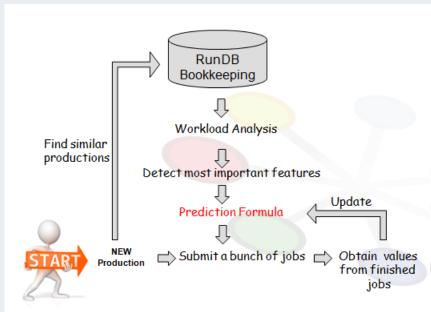
- ► Hardware specific:
 - CPU model
 - ► HS06
 - Cache size
 - ► RAM Size
- ▶ Input File
 - Size
 - Number of events
 - ► Run number (LHCb RunDB)
 - ► Trigger Configuration Key
 - Avg. Multiplicity
 - Avg. Luminosity ...

- Job
 - Start/End time
 - ▶ Site
 - Worker Node
 - Memory Footprint
 - Runtime

Automate the prediction procedure based on prior jobs and given job meta data

Supervised Learning

Reduce false estimates Simplify Production Manager's life



Normalized CPU time per event:

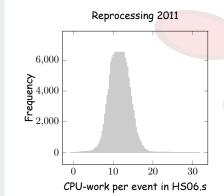
CPUTime*HEPSPECValue NumberOfEvents

Normalized CPU time per event:

CPUTime*HEPSPECValue NumberOfEvents

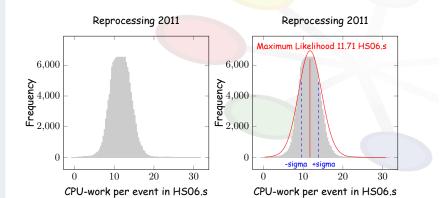
Normalized CPU time per event:

CPUTime*HEPSPECValue NumberOfEvents

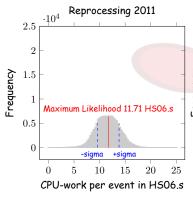


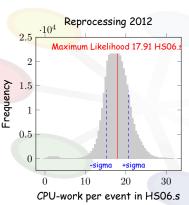
Normalized CPU time per event:

CPUTime*HEPSPECValue NumberOfEvents



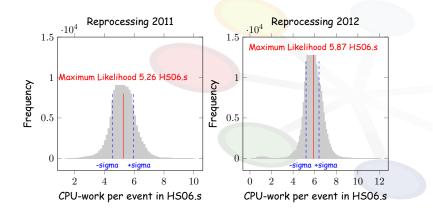
Comparison of 2011 and 2012 workloads:





N. Rauschmayr

Stripping: Sort reconstructed events into different output streams



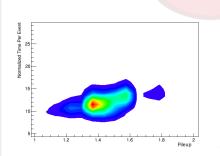
Certain well known correlations:

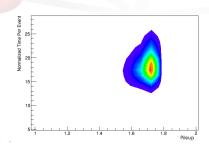
Beam energy versus event size

Certain well known correlations:

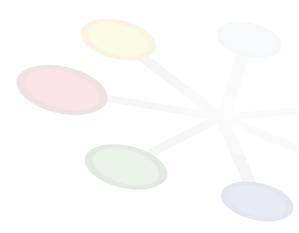
- ▶ Beam energy versus event size
- Pileup versus complexity of reconstruction

Example: Reconstruction (2011 versus 2012)





Avoid overfitting...



Avoid overfitting...

Linear regression:

runtime per event = $\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_3 + \Theta_4 x_4 + \Theta_5 x_5 + \Theta_6 x_6$

Avoid overfitting...

Linear regression:

runtime per event = $\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_3 + \Theta_4 x_4 + \Theta_5 x_5 + \Theta_6 x_6$

Normalize

File Size
Avg. Event Size
HEPSPEC
Number Of Events
Avg. Luminosity
Avg. Multiplicity

Avoid overfitting...

Linear regression:

١

runtime per event = $\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_3 + \Theta_4 x_4 + \Theta_5 x_5 + \Theta_6 x_6$

Normalize Find best ⊖

File Size	0.80
Avg. Event Size	0.19
HEPSPEC	-0.97
Number Of Events	-1.33
Avg. Luminosity	0.67
Ava Multiplicity	-0 08

11

Avoid overfitting...

Linear regression:

runtime per event = $\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_3 + \Theta_4 x_4 + \Theta_5 x_5 + \Theta_6 x_6$

K 5 12			_		
Normalize	Find b	est Θ	Remove.	small	Θ.

File Size	0.80	1.05
Avg. Event Size	0.19	×
HEPSPEC	-0.97	-0.97
Number Of Events	-1.33	-1.55
Avg. Luminosity	0.67	0.59
Avg. Multiplicity	-0.08	X

Avoid overfitting...

Linear regression:

runtime per event = $\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_3 + \Theta_4 x_4 + \Theta_5 x_5 + \Theta_6 x_6$

Normalize Fi	ind best	⊖ Remove small ⊖	Evaluate RMSE
File Size	0.80	1.05	2.16
Avg. Event Size	0.19	×	
HEPSPEC	-0.97	-0.97	-
Number Of Events	-1.33	-1.55	
Avg. Luminosity	0.67	0.59	
Avg. Multiplicity	-0.08	X	22% better than
			naive estimator
			like MLF

N. Rauschmayr

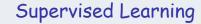
11

Stripping Jobs:

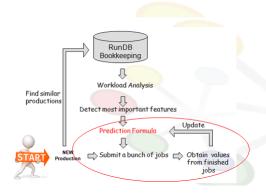
Find best ⊖	Remove small ⊖	Evaluate RMSE
-0.19	-0.18	0.54
0.70	0.62	
0.19	0.19	
0.23	0.27	
-0.08	X	
0.003	×	25% better than naive estimator
	-0.19 0.70 0.19 0.23 -0.08	0.70

12

like MLE



Supervised learning: there exist some labelled training data



What if only little amount of training data available?

13

- 1. Find similar jobs which have already run
- 2. Predict requirements for the next k jobs using either (MLE/LR)
- 3. When k jobs have finished, update prediction formula with the new results obtained
- 4. Repeat step 2 and 3 until all jobs have finished

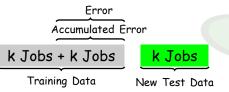
k Jobs

a New Test Data

k Jobs

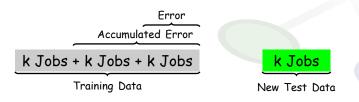
Training Data

- 1. Find similar jobs which have already run
- 2. Predict requirements for the next k jobs using either (MLE/LR)
- When k jobs have finished, update prediction formula with the new results obtained
- 4. Repeat step 2 and 3 until all jobs have finished



14

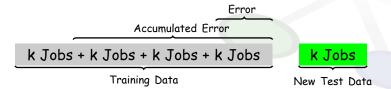
- 1. Find similar jobs which have already run
- 2. Predict requirements for the next k jobs using either (MLE/LR)
- When k jobs have finished, update prediction formula with the new results obtained
- 4. Repeat step 2 and 3 until all jobs have finished



N. Rauschmayr

14

- 1. Find similar jobs which have already run
- 2. Predict requirements for the next k jobs using either (MLE/LR)
- When k jobs have finished, update prediction formula with the new results obtained
- 4. Repeat step 2 and 3 until all jobs have finished



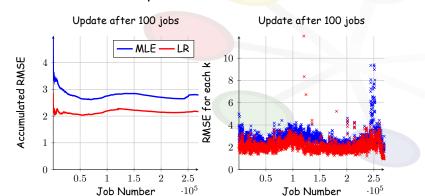
N. Rauschmayr 14



Root Mean Squared Error:

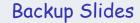
 $\frac{\sqrt{\sum_{i=0}^{n} (difference_i)^2}}{n}$

where difference is predicted minus real values



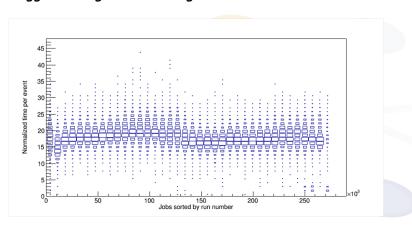
- Historical data can help us to predict future jobs
- Certain meta data are strongly correlated with runtime
 - Improved prediction up to 25%
- Both models (naive estimator and linear regression) can be easily implemented in Production and support the Production Manager in his work

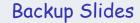
Questions



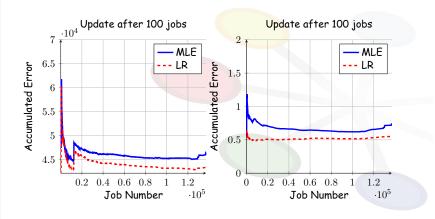
ory-based estimation for I job requirements

Trigger configuration changes over different runs

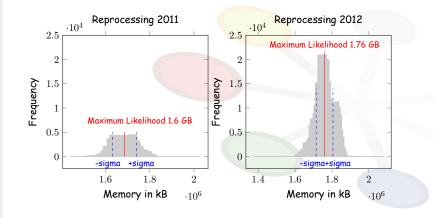




Stripping Jobs: Memory and Runtime per Event



Reconstruction: Memory Footprint



Stripping: Memory Footprint

Change from POOL to ROOT

