The Challenges of Developing and Maintaining HEP ‘Community’ Software

Amber Boehnlein
April 14, 2014
A Reminder

- Life is good!
- Our challenge is ‘How to make the Good Life better’
Disclaimer:
- limited in scope
- No gap analysis
- personal opinion in nature
- Source material: white papers

Outline
- What is community software
- Software life cycle
- General discussion of the challenges.
- Brief discussion of 5 successful examples of community software and the challenges that they faced or are facing
- Going forward
What is Community Software?

- Software that is developed and used explicitly for the common good
 - Addresses functionality that is common to multiple scientific (or technical) organizations.
 - Has a strong user driven component
 - Developed ‘in-house’ to HEP/NP

- Communities occur at different scales; support occurs at different scales
 - A community of developers may serve a community of scientists
 - Some communities are small and relatively self-contained
Much of today’s implementations of community software has roots in the mid-late 1990s
» Fertile period intellectually and financially
» Dramatic evolution in hardware architectures and costs
» Vibrant experimental program (HERA; LEP)
» BaBar, Belle, Tevatron Run II, LHC pushing requirements
» ILC design

At the time, very difficult to predict winners and losers in software projects
» Many joint projects
» Many innovative ideas
Software Life Cycle

- Recognition of needs while understanding potential solutions
 - Project Model
 - Start-up Model
 - Adaptation Model
- R&D/beta phase: Functionality first
- Adoption
 - Typically requires an effective champion to develop a user community
- Expansion Phase: Production while Developing
- Steady state operations
- Evolution
 - Many of our community tools have multi-decade life spans
- End of product life
 - One of the hardest challenges due to change costs
In-house Developed Computing Suite

- Accelerator Simulations and Modeling Codes
- Simulations of fundamental particle interactions
- Particle transport codes
- Experiment specific code for data acquisition, triggering, reconstruction from detector hits to physical objects
 » Conditions data
- Middleware stacks to handle all aspects of processing
- End User Analysis framework and tools
- Data Management and Preservation
- Field wide publication database (Inspire)
- On-line Atlas of combined results (Particle Data Group)
Examples

- Large Scale multi-year successful Community Software
 - Lattice QCD codes (Science Research)
 - INSPIRE (Information Technology)
 - Grid Projects (Underlying Technology)
 - Geant 4 (Toolkit for simulation)
 - Root (User Analysis framework)
Lattice QCD

- **History**
 - Basic computation techniques developed in the ’70s and custom machines were built
 - By the late 90’s systematic errors in key calculations around 10-20% insufficient compared to experiment

- **Formation of scientific collaborations in 2000**
 - Benefitted from dedicated software funding to develop common codes for gauge configurations
 - Flagship measurements - systematic errors at 1% level
 - Big consumers of HPC
 - Continue strong relationship to hardware vendors
 - Well developed and effective governance

- **Challenges**
 - Must please many masters
 - Insatiable demand for computing
 - Career paths
INSPIRE

- INSPIRE is a free, open service that hosts comprehensive databases of HEP research
 - An effective international partnership between CERN, DESY, FNAL, IHEP and SLAC
- Much appreciated by the HEP community as a scientifically powerful tool
- Challenges
 - Overcame technical stagnation
 - Small support/development team for a large user base
 - Questions about relevance
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>Development begins</td>
</tr>
<tr>
<td>1974</td>
<td>SPIRES-HEP database is released</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>1991</td>
<td>First web site outside of Europe, first db on web</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>2007</td>
<td>Search for new platform begins</td>
</tr>
<tr>
<td>2007</td>
<td>Partnership with CERN: Invenio platform selected</td>
</tr>
<tr>
<td>2009</td>
<td>Development begins on INSPIRE</td>
</tr>
<tr>
<td>2010</td>
<td>Beta release</td>
</tr>
<tr>
<td>2010</td>
<td>Explicit DOE funding/Advisory Board Charged</td>
</tr>
<tr>
<td>2011</td>
<td>Simultaneous development and production</td>
</tr>
<tr>
<td>2012</td>
<td>SPIRES front end deactivated</td>
</tr>
<tr>
<td>2013</td>
<td>INSPIRE best practices Dev/OPs</td>
</tr>
<tr>
<td>2015</td>
<td>Upgrading--</td>
</tr>
</tbody>
</table>
Google’s use now virtually ubiquitous for *all* net users
 - Some use likely more “casual” than INSPIRE

The pie appears to have grown!
 - More use of information services in 2015 than 2007?
 - Incredible user support for the unique services provided by INSPIRE
 - You can help! Sign up for a ORCID and link it to your HEPnames
To support the LHC distributed model, grid computing projects intended to support multiple experiments and disciplines

WLCG-EGEE & Open Science Grid
- Conceived roughly 1999 with funding around 2002
- Largely targeted towards access to large scale compute resources
- Pushed boundaries for the better: cyber security

Challenges
- Maintaining Funding: Soft money/essential infrastructure.
 - Continual re-invention and restructuring required
- Maintaining technical currency (See additional talks)
- Communities beyond LHC
Geant 4: Monte Carlo Transport Code

- G4 has the most comprehensive suite of physics processes and particle types
 - Tested and benchmarked over for 30 years
 - The complexity of geometrical descriptions leads to realistic representations.
- Geant 4 is effectively an exo-cortex of the field of particle physics
- Software Collaboration with a well defined governance model including user technical forum
- Extremely successful for the LHC physics program
- In wide use outside of HEP for aerospace and medical applications
Collaborators also from non-member institutions, including Budker Inst. of Physics IHEP Protvino MEPHI Moscow Pittsburg University
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>GEANT</td>
</tr>
<tr>
<td>1982</td>
<td>GEANT3 in production</td>
</tr>
<tr>
<td>1992</td>
<td>Two exploratory projects (CERN & KEK) focused on OO</td>
</tr>
<tr>
<td>1993</td>
<td>P58 submitted</td>
</tr>
<tr>
<td>1994</td>
<td>RD44 begins</td>
</tr>
<tr>
<td>1998</td>
<td>Geant 4 Beta Release</td>
</tr>
<tr>
<td>1998</td>
<td>1.0 production release</td>
</tr>
<tr>
<td>1999</td>
<td>RD44 ends and G4 collaboration is formed</td>
</tr>
<tr>
<td>2000</td>
<td>Collaboration expands to 100 members</td>
</tr>
<tr>
<td>…</td>
<td>BaBar Adopts; intense focus on LHC program</td>
</tr>
<tr>
<td>2010</td>
<td>Multithreading R&D</td>
</tr>
<tr>
<td>2013</td>
<td>V10.0 release</td>
</tr>
<tr>
<td>2014</td>
<td>Adoption of V10.0 by CMS; v10.1 released</td>
</tr>
</tbody>
</table>
Geant 4: Challenges

- Need for Speed…. Evolution to adapt to changing architectures
- Expanding the physics models – more physics, more accurate physics and faster physics
 - The Neutrino Community is very quick to point out that they are underserved by the current physics processes in G4
 - Prioritizing the needs across multiple physics communities
- Refreshing developer community and providing career paths

- Evolution—two proposed paths
 - Geant 4 roadmap: C++11/C++14
 - GEANT V R&D project ~ 2012
ROOT

- Physics Analysis Workstation (PAW): 1984
- ROOT: OO/C++ reimplementation: 1995
- It is the ultimate in-house developed community software
 » ROOT is the tool that has conditioned us as a community
 » no other science domains will adopt
- Comprehensive in services provided
 » I/O through to event display
 » C++ interpreter
- Governance: CERN Lead Project, FNAL collaboration
 » Development team remains strong and active
- Challenges
 » Evolving architectures
 » Enabling and isolating at the same time
Recap of the general lessons

- Note the time scales
 - Prototyping to production is typically 10 years
- Many different governance models can be effective
- Resources are always limited
 - Too few people doing too much
 - Never enough hardware
 - Increasing scrutiny about ‘commercial’ solutions
- Staying connected to the community and its needs
 - Inattention to community software has led to gaps in the portfolio
 - Burgeoning needs in the neutrino community/Direct Dark Matter
- Providing intellectual and technical continuity
- Managing the projects through the full life cycle
 - Enabling R&D
 - Fostering innovation—what are the next great ideas?
 - Where can and should we move on?
Meta Challenges

- Long term international projects
 » Community/Common software must become the norm.
- Community software can be recognized as ‘community assets’
- HEP Software Foundation (http://hepsoftwarefoundation.org)
 » Mechanism to foster coordination of common efforts in HEP software and computing
 » Has been growing by leaps and bounds
 » Governance: Do-oocracy
 » Join BOF on Friday afternoon!
Beyond HEP Software Foundation

- What distinguishes ‘Community Software’ is the need to serve a community
- Currently, prioritizing the resources for community software is piecewise
 - Lab-centric
 - Experiment-centric
- This leads to
 - Unnecessary duplication
 - Gaps in the portfolio of community tools
 - Difficult to start anything new
- “Portfolio Management” can be lightweight
 - Experience from the LHC experiments
 - Does require engagement from a variety of stakeholders
Conclusions

- HEP has developed many successful community tools and sustained them over many years

- HEP Software Foundation is a general recognition that more coordination to foster collaboration is necessary and desirable

- Leveraging the HSF, the HEP community should broadly work together to foster and prioritize forward going common and community projects