

ATLAS Data preservation

April 2015 Roger Jones for the ATLAS Collaboration

Data Preservation: What does it mean?

- Data preservation is an active field for funders and researchers
- ATLAS takes it very seriously; but the term can mean all things to all men
- ATLAS is clear to distinguish between:
 - Data preservation
 - For internal use
 - For external use
 - And Data sharing
 - For outreach
 - For research
- Learn from: JADE, LEP, Babar, Tevatron & the HERA
 - Build this into you model from the start

Data Preservation: Planning

- As a consequence, ATLAS has produced several documents
- An ATLAS Data Preservation policy document, which outlines the general principles of data preservation: the data themselves, data formats and reproducibility of physics results https://indico.cern.ch/event/211843/contribution/12/material/0/0.pdf
- An ATLAS policy document on **data access** rules, based on the DPHEP levels (next slide)
 - https://indico.cern.ch/event/286440/contribution/7/material/0/0.pdf
- An ATLAS note outlining the requirements for preserving ATLAS data for use by ATLAS
 https://cds.cern.ch/record/1697900?ln=en, ATL-SOFT-INT-2014-001
- An ATLAS mandate for analysis preservation, task force currently operating

Data preservation at a high level

ATLAS has broadly adopted the DPHEP classification of data by use case with decreasing complexity and end-user benefit

Preservation Model		Use Case	
	Provide additional documentation	Publication related info search	Documentation
2	Preserve the data in a simplified format	Outreach, simple training analyses	Outreach
3	Preserve the analysis level software and data format	Full scientific analysis, based on the existing reconstruction	Technical Preservation Projects
4	Preserve the reconstruction and simulation software as well as the basic level data	Retain the full potential of the experimental data	

- Preservation solutions at each level already exist, at least in part, but we are trying to make this more coherent
- The complexity comes from the supporting environment, software and tacit knowledge – preserve information, not data; data without context is meaningless

Level 1 & 2 data – supporting published results and outreach

- ATLAS has always been strong on the level 1 data
- Subject repositories like Inspire hold the data from the paper and supplementary data supporting/augmenting the results
- CDS holds supporting documentation
- We have many outreach datasets and tools
 - 2 fb⁻¹ of Higgs data (4 lepton and 2 photon modes)
- Some are now imported into the CERN opendata portal
 - http://opendata.cern.ch/education/ATLAS?ln=en
- The Kaggle Higgs challenge is an interesting case that is both outreach and also has aspects of level 3 (but is MC only)
 - https://www.kaggle.com/c/higgs-boson

The immediate challenge

The data preserved has to be meaningful; from the ATLAS note earlier

- It must be possible to reprocess the RAW data with the desired conditions and the new software version and the AOD¹ must be made available to users.
- There must be software available to read and analyse the data AODs.
- It must be possible to simulate newly generated Monte Carlo (MC) events with the geometry corresponding to the data.
- It must be possible to <u>digitize the MC events with the appropriate software</u> to emulate the readout, pileup, beam conditions etc. corresponding to the data.
- It must be possible to reconstruct the MC events in the same way as the data were reconstructed and write MC AODs.
- It must be possible to determine the trigger efficiency for physics analysis.
- it must be possible to retrieve any metadata required for physics analyses, e.g. the LHC beam conditions, ATLAS data taking and data quality conditions etc..

Lancaster University

ATLAS strategy for level 4 and after

- To keep the data live for the experiment and others, a choice
 - A final processing of the data with a fixed software/environment and maintain the latter forever
 - 2. Periodically reprocess with new software
- The latter option is the chosen
 - Old data benefits from knew knowledge
 - Avoids technology issues
 - Old data can be analysed with new tools
- In addition, we are exploring recasting solutions, establishing where it is appropriate
 - Preserves analysis information with all corrections applied
 - May be the most robust means of reuse by non-ATLAS members

Lancaster University

This strategy has requirements

- The RAW data must remain readable
 - You must have backward compatibility, even if you add new detectors.
 - This is difficult with some frequently changing objects, such as the trigger objects
- The reconstruction must work for old RAW data in an optimal and meaningful way
- A best-knowledge (BK) tag of the conditions database needs to be preserved for each year of running
 - The BK tag must be migrated with technologies
 - If new software needs new conditions, it must be derivable from the older conditions or dummy
 - Downstream conditions must be derivable in an automated way

Simulation requirements

- All ingredients for simulation must be supported in the BK tag
 - New Geant versions must be verified as describing the old detector well enough
 - Fast simulation must describe older data
 - Digitization will evolve with time (e.g. effects of radiation damage)
 and must be appropriate to the period simulated
 - Pileup and suitable minimum bias events need to reflect the period (e.g. μ -profile)
 - Trigger simulation is particularly problematic, as it relies on offline software releases at the time of data taking; old software <u>must</u> be used

Analysis-level use cases: Reproducibility & Replicability

The jargon is not obvious to an English speaker, but an important distinction is captured by the following

- Reproducibility:
 - Redo an analysis with the same tools, software, data etc
 - The same results should emerge but what required tolerance?
 And for what lifetime
 - The is a form of analysis preservation
 - Tools like VMs help, for a finite lifetime
- Replicability:
 - Repeat the high level analysis procedure with new data, evolved software, calibrations etc.
 - Implies a high degree of forward-porting of tools

Analysis Reproducibility

- Superficially simple
 - Most information is already recorded
 - Metadata in Atlas Metadata Information system, job transforms
 - Software in SVN
 - Documentation in Glance and CDS
- Practically very difficult
 - How long will a given VM system last?
 - How well can you separate from the hardware?
 - How well can <u>every</u> nuance be captured?
- How much is this a requirement?
 - Alluded to in funder policies, but not explicit.
 - A very useful form of documentation

Analysis Replicability

- Requires forward porting of software, tools, databases, adaptation to new data formats as discussed earlier
- For how long? Forever or until a major format change?
 - A clear division may happen, where run 1 data (e.g. AOD -vs- xAOD) and software quickly become difficult to use

 Current schedule would reprocess the full 2015 Run 2 data in latest version at the end of the year Beams in LHC

Reprocess all Run 1 in 2016

 Tools like Recast may be a better route for external reuse

Replicability – Metadata, Combined performance

- All tools reading metadata must continue to be able to read the old metadata
 - This includes in-file metadata; this is part of the RAW data readability and reconstructability requirement
- Data Quality information must be present for older data
 - Largely remains unchanged form tag to tag
 - Sometimes new software requires data features that render part of old data to change DQ status
- Combined performance groups cannot continually rerun to get recommendations for each version
 - Tools to derive them must be available, easier with new xAOD

Validation

- All levels of preservation require robust validation
- This must be made as automated and efficient as possible
- Every development of software, conditions of geometry to be validated by a central validation group

Conclusions

- ATLAS must preserve data in a meaningful way.
 - This is challenge.
- Current focus is on forward porting
- Analysis preservation presents challenges (and opportunities)
 - We are working through use cases, have trial solutions and will recommend a strategy by the summer
 - This will almost certainly involve the CERN portals under development
- This is all of potential use for Run 2

