

Active Job Monitoring in Pilots

Eileen Kuehn, Max Fischer, Manuel Giffels, Christopher Jung, Andreas Petzold

Steinbuch Centre for Computing, GridKa

www.kit.edu

Motivation

- Todays WLCG batch system usage dominated by pilots
 - Remote-controlled scheduling by using virtual overlay batch systems
 - Single pilots execute an arbitrary number of payloads
- No monitoring of payload resources via batch system
 - Pilot shields underlying information
 - No existing tools available
- Pilots in batch systems forbidden in other communities

Current Issues

- No information about single payloads
- Efficiency per payload cannot be determined
- Detection of misbehaving payloads not possible

Payload Monitoring Tool

- Process and network traffic monitoring tool
 - Monitoring process trees of batch system jobs
 - Network monitoring based on libpcap
 - Logging of network traffic on packet level
 - Association of process and network data
- Internal preprocessing
 - Categorisation into internal and external network traffic
 - Grouping of traffic by connection
- Stable operation for several months
- Already proven to be useful
 - For example: Detected a class of misbehaving jobs producing loads of external traffic because of a software bug
 - Firewall was heavily loaded and GridKa not reachable
 - Due to fine-grained monitoring, fast identification and reaction on issue

Operation on GridKa Cluster

- Tier 1 computing centre
 - Supports all four major CERN LHC collaborations as well as AUGER, BELLE2, COMPASS, and others
 - Operation of ~600 worker nodes
 - Provision of ~13,000 job slots
 - Batch system: Univa Grid Engine
- Prototyp monitoring on 2 racks
 - 2x16 worker nodes, ~800 job slots
 - Stable operation since July '14

Demonstrative Monitoring Sample

- Monitoring data subset for exploratory data analysis
 - 15 day timeframe
 - 4 worker nodes, ~100 job slots
 - ~10.000 batch jobs
- Complete UNIX process tree for each batch job
 - Batch system processes, job wrappers, watchdogs, ...
 - Wide range of complexity (234 3,983,680 sub-processes)
- Detailed process information
 - Name, cmd, \$?, ...
 - Per connection source/destination IP, port, data rate, packet count, …
- Selection of CMS pilots by
 - CMS Pool Account ownership
 - HTCondor (glidein)

Payload Splitting Approach

- Payloads started and managed by one parent process
 - Cut on pilot process children
- Sequential management/execution of payloads
- Internal/external communication mainly takes place in payloads

Payloads in CMS Pilots

Pilots always combine multitude of payloads
Payload count varies widely between pilots

Traffic Distribution by Component

Traffic generation dominated by payload processes
Traffic footprint clear indicator for payload identification

Pilot monitoring vs. payload monitoring

Pilot monitoring vs. payload monitoring

Pilot merges payload features into single measurement

Pilot monitoring vs. payload monitoring

Pilot merges payload features into single measurement
Payload splitting reveals individual resource consumption

Summary and Outlook

- Fine-grained job monitoring tool
 - Process tree recording
 - Per process connection tracking
- Tracking of payloads in executing pilots
 - Independent of VO monitoring
 - Reestablished "job"-level monitoring
 - Detailed per job traffic monitoring
- Extension of payload identification
 - Generalisation of pilot identification beyond CMS
 - Near realtime recognition
- Basis for on-line assessment of payloads
 - Anomaly detection and reaction
 - Identification of payload types
 - Evolution of usage patterns

Questions?

Steinbuch Centre for Computing, GridKa

www.kit.edu

Payload Monitoring Tool

