EXCELENCIA

SEVERO

OCHOA

21st International Conference on Computing in High Energy and Nuclear Physics CHEP2015 Okinawa Japan: April 13 - 17, 2015

Getting prepared for the LHC Run2: the PIC Tier-1 case

J. Flix^{*}

On behalf of the PIC Tier1 team \rightarrow

* PIC Tier-1 project coordinator WLCG Operations co-coordinator CMS Resource Management Office co-coordinator

jflix@pic.es @JosepFlixMolina

L Dr. Antonio PEREZ-CALERO YZ...

- Mr. Ricard CRUZ (UAB/PIC)
- Fernando LOPEZ MUNOZ (Univ...
- Andreu PACHECO PAGES (Insti...
- Liena PLANAS (PIC)
- Mr. Bruno RODRIGUEZ (UAB/PI...
- Maria Del Carmen PORTO FER...
- Alexey SEDOV (Universitat Aut...
- Prof. Manuel DELFINO REZNIC...
- Lesther ACCION GARCIA (Univer...
- L Vanessa ACIN PORTELLA (Univ...
- Larlos ACOSTA SILVA (Universi...
- Jordi CASALS HERNANDEZ (U)
- & Marc CAUBET SERRABOU (Uni...

Institut de Física d'Altes Energies

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Port d'Informació Científica (PIC) is the largest Grid centre in Spain, supporting **research** involving **analysis of massive sets of distributed data**

It provides computing services for many **applications**

- host the **Spanish WLCG Tier-1 centre** → ~85% of resources
 - * Offer 5.1% of Tier1 computing resources for ATLAS, CMS and 6.5% for LHCb
- host resources of the Spanish federated ATLAS Tier-2
- provides an ATLAS Tier-3 facility

~25 Kms from Barcelona Autonomous University of Barcelona

PIC

Tier-1 computing challenges for Run2

The LHC experiments will collect unprecedented data volumes in the next Physics run (Run2), with high pile-up collisions

More data and more complex processing!

Note1: LHC experiments were asked to optimize the use of the available resources, in the midst of widespread <u>funding restrictions</u>, without penalizing Run2 physics objectives [<u>Computing Model Update</u>]

Note2: Most funding agencies asked (*forced*) their computing centers to <u>operate with less money</u>, without degrading performance

PIC

The real **<u>challenge</u>** during the last 2-3 years was to pave the road towards doing **MORE**, doing **BETTER**... with **LESS MONEY**!

The real **<u>challenge</u>** during the last 2-3 years was to pave the road towards doing **MORE**, doing **BETTER**... with **LESS MONEY**!

The real <u>challenge</u> during the last 2-3 years was to pave the road towards doing **MORE**, doing **BETTER**... with **LESS MONEY**!

Hence, significant efforts for experiments and sites were needed

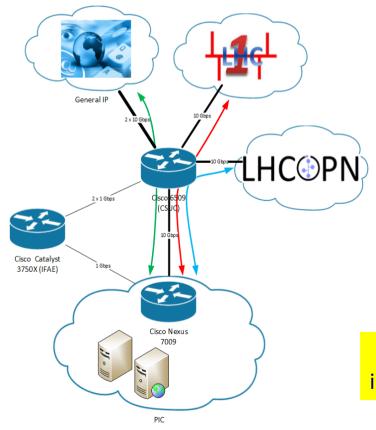
- with the goal of providing a context compatible with flat funding

Tier-1 data management upgrades

With better and increased network capabilities among centers, the Tier-1s become **data servers** to the whole Grid

- XRootD **fail-back** activated in PIC (WNs can read data from remote centers)
- ATLAS/CMS PIC data can be **XRootD** accessed **from remote centers** (~4 PB)
- LHCb data can be HTTP accessed from remote centers (~800 TB)

Joining the data federations requires(d) substantial **R&D** and tuning


- Deployment of compatible data management software (PIC: dCache)
- Creation of **disk-only pools**, to protect tape systems against uncontrolled *rw*
- Integration of dedicated experiment **monitoring plugins**
- Deployment of site 'local' XRootD redirectors
- Implementation of **protection mechanisms**

PIC

Tier-1 data management upgrades

Network access to data allows for a valuable *cost optimisation*, as disk is the <u>most expensive resource</u>

But, this puts more load on the network and network is not free!

Upgrades

- Careful planning
- Impact on LAN costs
 - * New switches and router upgrades
 - * The need for more powerful Firewalls (IPv6)
- Increase of WAN last-mile costs
- Deployment efforts

Not yet saturating, but WAN bandwidth increase is being drafted with involved parties

PIC

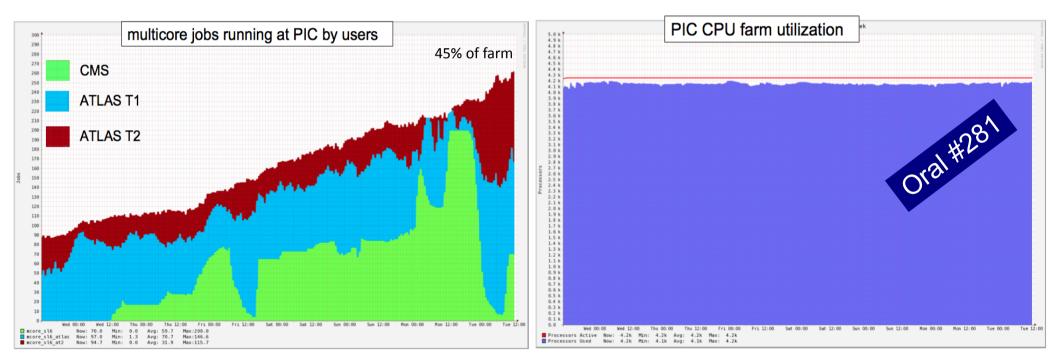
WLCG multicore jobs @ PIC

Given the evolution of LHC running conditions at the restart of the data taking in 2015, experiments are developing **multicore applications**

- PIC co-coordinates the WLCG Multicore deployment Task Force

The challenge for sites in this new scenario

- Effective scheduling of both multicore and single-core jobs, that will still be used by all the VOs using shared sites
- Maximize CPU usage: minimize idle CPUs while there are jobs in queue
 → In particular avoiding static splitting of resources
- In order to schedule multicore jobs, the n-core slots must be created
 - Preventing single core jobs taking resources of ending jobs (*draining*)
 - → **Backfilling** (using short running jobs while sufficient resources are being reserved to create a multicore slot) is not currently available/practical
 - Therefore, draining represents a wastage, an unavoidable price to be paid
 - Once the cost has been paid, avoid multicore slot destruction


PIC

científica

port d'informació

WLCG multicore jobs @ PIC

Controlled draining and multicore slot conservation at PIC achieved with **<u>dynamic partitioning</u>** of site resources: implemented by **mcfloat** tool (NIKHEF) for Torque/Maui

Controlled ramp up of multicore resources reduces draining impact on farm utilization 98% full farm while ramping up under combined pressure

PIC

científica

port d'informació

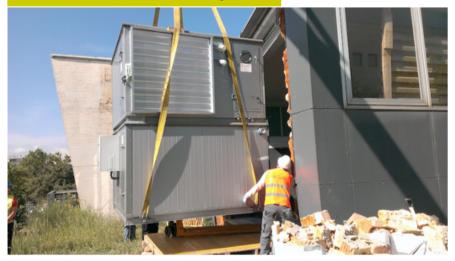
Free-Cooling at PIC

In 2014, PIC has improved the energy efficiency of its main computing room

 \rightarrow 15 weeks of work, without any downtime, interruption and/or negative impact in Ops

Before:

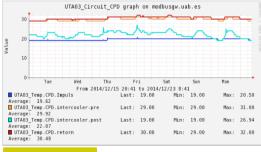
- No separation of cold/hot air in the room
- Several CRAH's (Computer Room Air Handler) managing the air through a cold water battery, injecting air at 14° C to get a room temperature of 22-23° C (*inefficient*)
- PUE (Power Usage Effectiveness) was about 1.8


<u>After:</u>

- CRAH's replaced by 3 free-cooling units: indirect heat exchangers with outside air and equipped with adiabatic cooling humidifiers
- Implemented separation of hot and cold flows in the room
- Hot aisle containment and confinement + installation of ceiling to contain the hot air
- Increase of inlet temperature according to the ASHRAE recommendations
- Installation of dedicated monitors for the most important climate parameters
- PUE expected in the range 1.45-1.3

Free-Cooling at PIC

Installation of free-cooling units



New technical area

Free-cooling unit control/monitoring

rdd graphs

9.8 °C 40 %

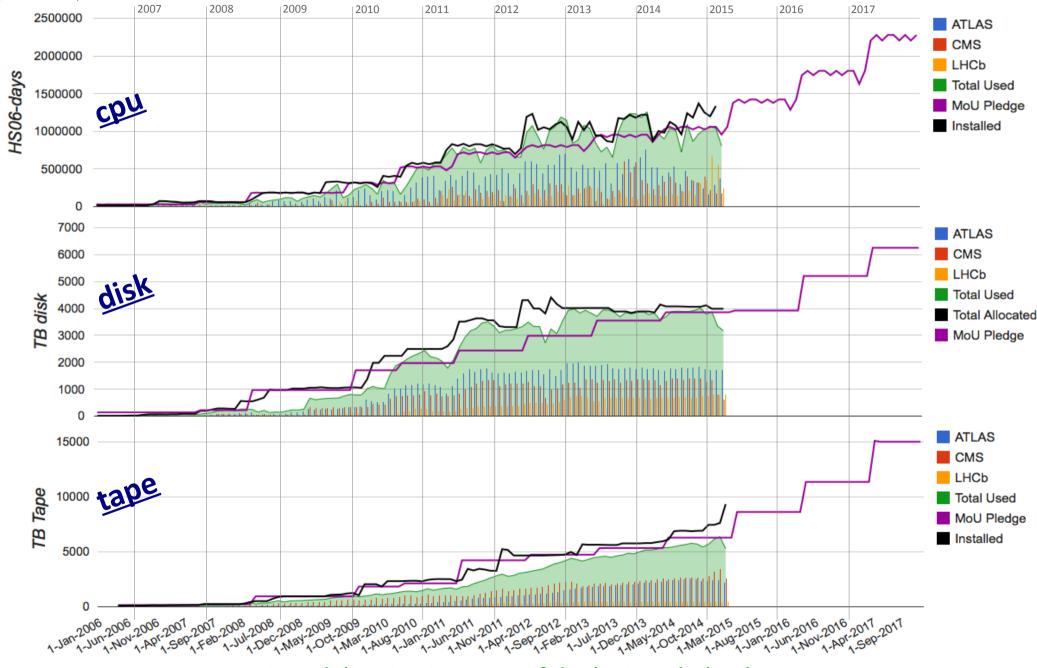
13/Apr/2015

8.2 °C

💼 🖬 🔳 🐒

20.7 °C

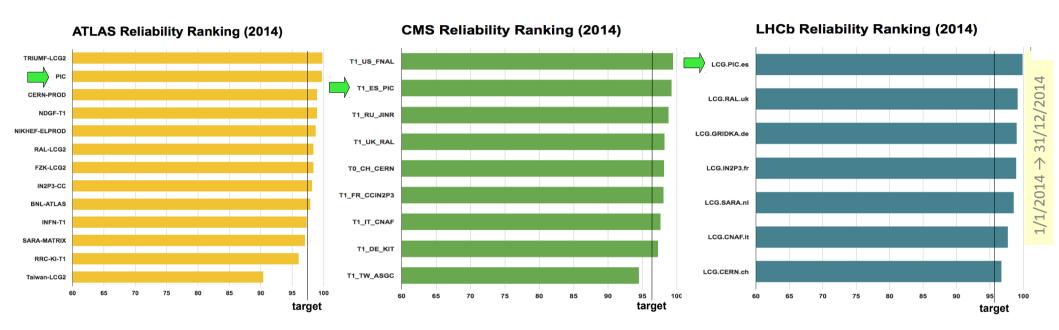
Free-Cooling at PIC



The work was completed in September 2014

- one-year period ahead to study/adjust the system: reach maximum energy efficiency
- In December 2014, we already reached PUE of 1.3!
- Electricity costs savings in the next <4 years amortized investment

PIC Tier-1 CPU and storage capacity growth...



PIC Tier1 delivering in terms of deploying pledged capacity

PIC

From Jan. 2014, WLCG measures the reliability using more detailed experiment probes

PIC Tier1 is at the top of Reliability Rankings (99.9% ATLAS, 99.4% CMS, 99.9% LHCb)

YES, being smaller makes it a bit easier to be reliable

BUT, being a multi-experiment site makes it harder

✓ PIC Tier1 delivering in terms of service quality

PIC

Deployed a RedHat Enterprise Virtualization system (RHEV 3.4.2), KVM-based

7 Hypervisors, each: 16 cores / 96GB RAM (HP Proliant BL460c) with 2x10GbE NetApp FAS3220 (2 TB, Thin Provisioning - QCOW2) is FC-connected to the HPBlade Box

- → This reduces the number of physical machines by a factor 10, without impact on the reliability and services performance at ¹/₃ costs!
- \rightarrow Testing **Ovirt 3.5** at scale to save license costs

Constant efforts to improve configuration management and automation

A <u>new powerful</u> (Insulated Gate Bipolar Transistor) <u>UPS</u> of 550 KVA was recently installed, w/efficiency in the range of 97%-99% (small loses)

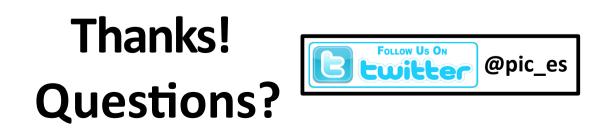
We **<u>adjust</u>** the PIC farm power to electricity cost, since beg. 2013

→ Less CPU during high cost periods, and vice-versa, keeping annual pledges OK
 → Reduction of electricity bill is ~10%

PIC Tier-1 is operated with less personnel as compared to average Tier-1 values

•••

PIC


PIC Tier-1 compliant with the new WLCG requirements for Run2

The needed **resources** are in place

Computing center **infrastructure** has been improved to reduce costs

Operational and **maintenance** costs have been as well reduced, without compromising any of the objectives

The implementations done in PIC are **flexible** enough to rapidly evolve following changing technologies

