Data Acquisition for the New Muon g-2 Experiment at Fermilab

Wesley Gohn

University of Kentucky

April 13, 2015

(中) (종) (종) (종) (종) (종)

Outline

Introduction

- Physics of Muon g-2
- Project Status
- Detectors and Backend Electronics

2 Data Acquisition System

- System Requirements
- GPU Processing
- Prototyping

Physics of Muon g-2

- In the standard model, the muon is a spin 1/2 pointlike particle.
- It has a magnetic dipole moment of $\vec{\mu} = g \frac{q}{2m} \vec{s}$, with g = 2 for a pointlike particle (Dirac)
- Additional effects from QED, electroweak theory, and hadronic factors move the standard model prediction of g away from 2. It has become customary to measure this discrepancy, g-2.
- If a discrepancy with the standard model value is found, beyond standard model contributions to g-2 could come from SUSY, dark photons, or other new physics (NP).

Measurements of g-2

- BNL E821 measured g-2 to have a 3.3 σ discrepancy from the standard model (2006).
- Fermilab E989 will measure 20 times the number of muons, reducing the uncertainty on this measurement by a factor of 4.
- Without theory improvements, discrepancy could reach > 5σ.

 $a_\mu \equiv rac{g-2}{2}$

$$ec{\omega}_{a}=-rac{Qe}{m}[a_{\mu}ec{B}-(a_{\mu}-(rac{mc}{p})^{2})rac{ec{eta} imesec{E}}{c}]$$

W. Gohn (U. Kentucky)

4.13.15 4 / 19

Project Status

- The ring was moved from BNL to FNAL in 2013.
- It has been installed in our new MC1 building and is currently being cooled.
- Plan for data taking to begin in early 2017.

4.13.15 5 / 19

Detectors and Backend Electronics

- Measurement will utilize 24 calorimeters (each composed of 54 PbF₂ crystals read out by SiPMs), 3 straw trackers, and several auxiliary detectors.
- Each calorimeter will be readout by a custom WFD in a μ TCA crate with an AMC13 control module.

Images courtesy of David Sweigart

Requirements

- Accomodate a 12 Hz average rate of muon spills that consists of sequences of four successive 700 μ s spills with 11 ms spill-separations
- Handle the readout, processing, monitoring and storage of the data obtained from the twenty-four electromagnetic calorimeters, each comprising 9×6 arrays of PbF₂ crystals read out by SiPMs.
- The signals derived from individual crystals are read out by 1296 channels of custom 800 MHz, 12-bit, waveform digitizers.
- Provide both the readout of the raw ADC samples and the derivation of T-method, Q-method, and other calibration, diagnostic and systematic datasets.
- For a 12 Hz spill rate the time-averaged rate of raw ADC samples is 18 GB/s in total.

DAQ Schematic

- Layered array of commodity, networked processors
- FE layer for readout of digitizer (calo), MHTDCs (straws)
- BE layer for assembly of event fragments, storage
- Slow control layer for setting, monitoring of HVs, etc.
- Online analysis layer using ROME for monitoring the integrity of raw data, physics data.

4.13.15 8 / 19

MIDAS

- MIDAS is a data acquisition software developed at PSI and also used extensively at TRIUMF.
- Includes web interface for easy control.
- Frontend acquisition code written in C/C++.
- ROOT analyzer for online data monitoring.
- Data will be written to tape as MIDAS datafiles.

Equipment							
Equipment	Status	Events	Events[/s]	Data[MB/s]			
MasterSLAC	MasterSLAC@fe01	4045	30.2	0.002			
VMEcrate	(frontend stopped)	0	0.0	0.000			
EB	(frontend stopped)	6	0.0	0.000			
CaloSimulatorAMC1301	(frontend stopped)	0	0.0	0.000			
AMC1301	AMC1301@fe01	4016	30.3	4.346			
AMC13Simulator01	AMC13Simulator01@fe01	4030	30.2	0.001			
CaloSimulatorTCPIP01	(frontend stopped)	6	0.0	0.000			
CaloReadoutTCPIP01	(frontend stopped)	6	0.0	0.000			
AMC13Simulator02	AMC13Simulator02@fe01	4005	30.2	0.001			
AMC1302	AMC1302@fe01	3981	30.2	4.333			

4.13.15 9 / 19

Multithreading with mutex locks

DAQ for Muon g-2 at FNAL

4.13.15 10 / 19

GPU Processing

- Data will be processed in an array of 24 GPUs (One GPU per calorimeter)
- Utilizing NVIDIA TESLA K40 GPUS
 - Peak double precision floating point performance: 1.43 Tflops
 - Peak single precision floating point performance: 4.29 Tflops
 - Memory bandwidth 288 GB/sec
 - Memory size (GDDR5): 12 GB
 - CUDA cores: 2880
- Data processing code is written using CUDA.

· and tel A ·

Results of bandwidth tests:

Frontend Machine	GPU	Host to device, Pageable	Host to device, Pinned
FE01	K20	3326.6 MB/s	5028.3 MB/s
RAVE01	K20	5628.6 MB/s	6003.6 MB/s
RAVE01	K40	6647.8 MB/s	10044.3 MB/s

T and Q Methods

CUDA routines process data with two complimentary methods.

- T-method
 - Positron events in the calorimeter are individually identified, sorted and fit to obtain time and energy.
 - All events above an energy threshold are included.
 - $\vec{\omega}_a$ is determined from a fit to a pileup-subtracted histogram.
 - This was the method used in BNL E821.
- Q-method
 - Individual positron events are not identified.
 - Detector current is integrated as a proxy for event energy.
 - No pileup correction is necessary!

(i) example T-method

Test Stands

- Test stands operating in parallel at Fermilab and U. of Kentucky
- Currently includes backend, frontend, gateway, and $\mu {\rm TCA}$ crate with WFD and AMC13
- Plan to expand to a 25% DAQ system within the next month.

W. Gohn (U. Kentucky)

DAQ for Muon g-2 at FNAL

4.13.15 13 / 19

AMC13 Simulator

- Generates realistic waveforms and packs the data in the AMC13 data format.
- Allows us to exersize the DAQ without dependence on hardware.
- Plan to develop this into a tool that will recreate the full spectrum of DAQ input, which will be used for testing the complete data acquisition system.

W. Gohn (U. Kentucky)

DAQ for Muon g-2 at FNAL

4.13.15 14 / 19

Prototyping

Event building test

MIDAS experimen				0:08:06 201	3 Kell.00
Stop ODB Messages	Alarms Pr	ograms 0	Config		
RunLog Logbook Elog					
Run #2071 Running	Alarms: On	Restart:	No I	Data dir: /dat	a/UKY/mid
Start: Wed May 29 20:	07:16 2013	5	Runnin	g time: Oh00n	150s
Equipment	Sta		Events	Events[/s]	Data[MB/s
MagicBox	magic_b	ox@mb	0	0.0	0.000
VMEcrate	(frontend	stopped)	0	0.0	0.000
masterMT	(frontend	stopped)	365	0.0	0.000
EB	Ebuilde	er@be	0	0.0	0.000
AT59870	(frontend	stopped)	0	0.0	0.000
EMC	(frontend		5	0.0	0.000
master	master	@fe02	574	11.9	0.001
FakeCalo01	(frontend		0	0.0	0.000
FakeData01	FakeData	01@fe01	564	12.0	2.058
FakeData02	FakeData	02@fe01	578	12.0	2.057
FakeData03	FalceData	03@fe01	555	12.0	2.053
FakeData04	FakeData	04@fe01	566	12.0	2.059
FakeData05	FakeData	05@fe01	575	11.7	2.002
FakeData06	FakeData	06@fe01	551	12.0	2.058
FakeData07	FakeData	07@fc01	564	12.0	2.059
FakeData08	FalceData	08@fe01	576	12.0	2.059
FakeData09	FakeData	09@fe01	551	11.6	1.999
FakeData10	FakeData	10@fe01	563	12.0	2.059
TakeData11	FakeData	11@fe01	573	12.0	2.059
FakeDala12	FakeData	12@fe01	551	11.9	2.052
FakeData13	FakeData	13@fc01	561	12.0	2.058
FakeData14	FalceDiata	14@fe01	571	12.0	2.057
FakeData15	FakeData	15@fe01	547	12.0	2.060
FakeData16	FakeData	16@fe01	558	12.0	2.059
FakeData17	FakeData	17@fe01	570	12.0	2.057
FakeData18	FakeData	18@fe01	544	12.0	2.057
FakeData19	FakeData	19@fe01	555	12.0	2.057
FakeData20	FakeData	20@fe01	567	11.6	1.997
FakeData21	FakeData		578	12.0	2.059
FakeData22	FakeData		555	12.0	2.060
FakeData23	FakeData	23@fe01	567	12.0	2.059
FakeData24	FakeData	24@fe01	578	12.0	2.059
FakeCaloNewQ01	(frontend		0	0.0	0.000
CaloSimulatorTCPIP01	(frontend	stopped)	0	0.0	0.000
CaloReadoutTCPIP01	(frontend	stopped)	0	0.0	0.000
Channel	Events	MB writt	ten Com		Disk level
#0: run02071.mid	579	99.383		N/A 63	9.96

-- Event# 1 ---Evid:0001- Mask:0000- Serial:0- Time:0:51258c40- Usize:2881352/0:25f748 Rank 1 ist ==F101SR01F102SR02F102SR02F104SR04F105SR05F108SR06F107SR07F10RSR08F109SR09F10 R11F0/25R1/F10/35R1/F10/45R1/F10/55R1/F10/57R1/F10/85R1/F10/55R1/F12/5R2/F12/5R2/F12/5R2/F12/5R2/F12/5R2/F12/5

12Hz Event builder data performance

Data volume per calo frontend per spill (MB)

W. Gohn (U. Kentucky)

DAQ for Muon g-2 at FNAL

4.13.15 15 / 19

э

GPU Processing Time

W. Gohn (U. Kentucky)

DAQ for Muon g-2 at FNAL

4.13.15 16 / 19

Prototyping

Dual GPU rate test

Run Status						
Run	Start: Tue Mar	3 09:26:44 2015	Running time: 0h02m15s			
2956 Running	Alarms: On	Restart: Yes	Logger not running			
Stop Experiment Name: SLAC						
09:26:44 [mhttpd,INFO] Run #2956 started						

Equipment							
Equipment	Status	Events	Events[/s]	Data[MB/s]			
MasterSLAC	MasterSLAC@fe01	4045	30.2	0.002			
VMEcrate	(frontend stopped)	0	0.0	0.000			
EB	(frontend stopped)	6	0.0	0.000			
CaloSimulatorAMC1301	(frontend stopped)	0	0.0	0.000			
AMC1301	AMC1301@fe01	4016	30.3	4.346			
AMC13Simulator01	AMC13Simulator01@fe01	4030	30.2	0.001			
CaloSimulatorTCPIP01	(frontend stopped)	6	0.0	0.000			
CaloReadoutTCPIP01	(frontend stopped)	6	0.0	0.000			
AMC13Simulator02	AMC13Simulator02@fe01	4005	30.2	0.001			
AMC1302	AMC1302@fe01	3981	30.2	4.333			

- Test completed at full rate over 10 GbF in UKY test stand using older generation GPUs.
- TCP/IP tuned to achieve maximum rate.
- Repeating test at MC-1 test stand with two Tesla GPUs.
- Test will determine if single machine can sustain total rate of two calorimeters.

4.13.15 17 / 19

First WFD readout

- First readout of WFD by DAQ occurred during SLAC test-beam last year.
- Since then, Cornell has continued development of the WFD hardware and firmware, and the first WFD has just been delivered to the DAQ group for testing.
- We hope to have \approx 5 WFDs for testing later this Spring, and a full crate of 12 in the Fall.

Online Database Browser						
Find Create Delete Create Elog from this page						
/ Equipment / AMC1301	/ Equipment / AMC1301 / Settings / Rider01 /					
Key	Value	+				
rider_enabled	1 (0×1)					
sample_length	256 (0x100)					
pre_delay	56 (0x38)					

MIDAS experim	ent "SLAC"	Wed Jul	23 13:22:	10 2014	Refr:5
Stop ODB Mes	sages Alarms	Programs Co	nfig Help		
RunLog Elog					
Run #1578 Running	Alarms: On	Restart: Yes	Data d	ir: /data/SL/	C-test/mid
Start: Wed Jul 23 1	3:22:04 2014	Ru	nning time	: 0h00m06s	
Equipment		Status	Events	Events[/s]	Data[MB/s]
Master SLAC	Maste	nSLAC@fe01	447	114.8	0.007
VMEcrate	(front	(frontend stopped)		0.0	0.000
EB	Eb	Ebuilder@be		114.8	0.482
CaloSimulatorAMC1	301 CaloSimula	torAMC1301@fe0	649	114.8	0.007
AMC1301	AMC	1301@fe01	655	114.7	0.473
Channel	Events	MB written	Compre	ssion D	lisk level
#0: run01578.mid	502	2.149	N/A	62.3	2 %
13:22:04[Ebuilder,	INFO] Run #1	578 started			
mhttpd [be]	Logger [be]		MasterSLAC [fe01]		
AMC1301 [fe01]	CaloSimulatorAMC1301 [fe01]		ODBEdit [be]		
Ebuilder [be]					

4.13.15 18 / 19

- The new muon g-2 experiment will run at Fermilab beginning in 2017 with the goal of reaching 20× the BNL statistics.
- A new state-of-the-art data acquisition system utilizing parallel data processing in a hybrid system of multi-core CPUs and GPUs is required to achieve the necessary data rates.
- The DAQ will acquire data from 1296 channels of custom μ TCA waveform digitizers, as well as straw trackers and auxiliary detectors at a rate of 18 GB/s.
- Prototyping of the DAQ is underway, and construction will be complete by mid-2016.