MOMENT MORPHINGa

Interpolation between multi-dimensional histograms

Max Baak1, Stefan Gadatsch2, Robert Harrington3, Wouter Verkerke4

16th April, 2015

1CERN, $^2,^4$Nikhef, 3University of Edinburgh

aM. Baak, S. Gadatsch, R. Harrington and W. Verkerke 2014.
Given a set of measurements x, and a hypothesis α, what is the probability of the data under this hypothesis?

Define a probability model $f(x|\alpha)$.

Generally no analytical predictions for $f(x|\alpha)$ available at LHC.

Monte Carlo simulation (CPU expensive and time consuming) for “reference” parameter values.

Statistical inference requires maximizing the likelihood.

Likelihood function must be defined for all values of α.

Interpolate between available samples.

Assumption: resolution is larger than simulated step size.
Changing **mean**

E.g. shifting mass peak, etc.

Changing **variance**

E.g. resonance width, etc.

In the following construct a continuous parametric model for all other parameter values
 STEP 1 – VERTICAL MORPHING

- Suppose $f(x|m)$ is known for n values of m

- Write Taylor series up to order $n – 1$ around a reference value m_0

$$f(x|m_i) \approx \sum_{j=0}^{n-1} (m_i - m_0)^j \frac{1}{j!} \frac{d^j f(x|m_0)}{dm^j} \quad \Leftrightarrow \quad f'_j(x|m_0) = \sum_{i=0}^{n-1} (M^{-1})_{ji} f(x|m_i)$$

- Predicted template shape at any value m' is a linear combination of the reference templates (“vertical” morphing)

$$f_{\text{pred}}(x|m') = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (m' - m_0)^j (M^{-1})_{ji} f(x|m_i)$$

$$= c_i(m')$$

- Coefficients c_i add up to 1
A TOY EXAMPLE

morphing parameter

Projection of p.d.f.s

0 0.5 1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

1st input template (mapped to m=0)
2nd input template (mapped to m=1)
Vertical morphing interpolation (at m=0.5)
Linear transformation of the input observables $f(x|m_i) \rightarrow f(x'|m_i)$

Translating referred to as "horizontal" morphing

$$x'_{ij} = (x_j - \mu'_j) \frac{\sigma_{ij}}{\sigma'_j} + \mu_{ij}$$

$$\mu'_j(m) = \sum_i c_i(m) \cdot \mu_{ij}$$

with

$$\sigma'_j(m) = \sum_i c_i(m) \cdot \sigma_{ij}$$

Normalization only changed by the Jacobian

$$\int_{-\infty}^{+\infty} f(x'|m_i)dx = \frac{1}{\prod_j a_j(m')} \int_{-\infty}^{+\infty} f_i(x|m_i)dx$$

Final p.d.f. is self-normalized

$$p(x|m') = \sum_i c_i(m')f(x', m_i) \prod_j a_j(m')$$
BACK TO THE TOY EXAMPLE

morphing parameter

0 0.5 1

Projection of p.d.f.s

0 50 100 150 200 250 300 350 400

1st input template (mapped to m=0)
2nd input template (mapped to m=1)
Vertical morphing interpolation (at m=0.5)
MomentMorph interpolation (at m=0.5)
(accounting only for shifted mean)
// This example builds two normal distributions and uses moment morphing to
// interpolate between the templates using RooFit.
using namespace RooFit;

// Create a persistable container for RooFit projects, allowing to use a simplified
// scripting language to build the p.d.f.s needed in this example
RooWorkspace w("w", 1);

// Build two normal distributions, corresponding to different values in the morph
// parameter space. They share the same observable, but have otherwise different
// moments, i.e. mean and width.
w.factory("RooGaussian::gaussian1(obs[0,400],50,15)");
w.factory("RooGaussian::gaussian2(obs,300,40)");

// Build a RooMomentMorph p.d.f. which interpolates between the normal distributions
// created before. The interpolation is parametrized by the parameter alpha and the
// reference templates map to alpha=0 and alpha=1 respectively.
w.factory("RooMomentMorph::morphpdf(alpha[0,1],obs,{gaussian1,gaussian2},{0,1})");

// Set the morphing parameter alpha explicitly to 0.5.
w::alpha->setVal(0.5);

// Create a frame to draw the p.d.f. from before and show the input templates as
// solid blue curves and the moment morph p.d.f. at alpha=0.5 in dashed red.
RooPlot* frame = w::obs->frame();
w::gaussian1->plotOn(frame, LineColor(kBlue), LineStyle(kSolid));
w::gaussian2->plotOn(frame, LineColor(kBlue), LineStyle(kSolid));
w::morphpdf->plotOn(frame, LineColor(kRed), LineStyle(kDashed));
frame->Draw();
More Examples

Cauchy distribution \(\xrightarrow{\text{\quad}}\) Crystal Ball
line shape \(\xrightarrow{\text{\quad}}\) normal distribution

Standard Model Higgs boson
decaying to four leptons
Variations around a nominal distribution
- Typically just the nominal distribution and ±1σ variations simulated

\[f(x|\theta)|_{\theta=0, \pm 1} \rightarrow f(x|\theta) \text{ for all } \theta \]

Assume that systematic effects in physics measurement factorize: \(L(\alpha_i, \alpha_j) = L(\alpha_i)L(\alpha_j) \)

- Used for background description in ATLAS
 \(H \rightarrow ZZ^* \rightarrow 4\ell \) analysis
- Illustration for three uncertainties
 - Flat, low \(m_{4\ell} \), high \(m_{4\ell} \)
Extendable to $M \geq 1$ observables and $N \geq 1$ model parameters

Reference points on a N-dimensional hypercube

Model the impact of a non-factorizable response: $L(\alpha_i, \alpha_j) \neq L(\alpha_i)L(\alpha_j)$

E.g. b-tagging calibration depends (somewhat) on jet calibration

```cpp
1 // Define axes that span a hypercube
2 RooBinning dim1(1, 0.0, 1.0);
3 RooBinning dim2(1, 0.0, 1.0);

// Attach reference distributions to bin boundaries
5 RooMomentMorphND::Grid referenceGrid(dim1, dim2);
6 referenceGrid.addPdf(*gauss1, 0, 0);
7 referenceGrid.addPdf(*gauss3, 1, 0);
8 referenceGrid.addPdf(*gauss2, 0, 1);
9 referenceGrid.addPdf(*gauss4, 1, 1);
```

Subject to changes in the covariance moments
AN EXAMPLE IN TWO DIMENSIONS

observable 1
5
−0
5
10
15

observable 2
6
−4
−2
−0
2
4
6
8
10

morphing parameter 2
0
0.5
1

morphing parameter 1
0
0.5
1
1.5

Input templates
True template
Moment morphing
Vertical morphing
68% CL
95% CL
Exact for any distribution with linearly changing first and second moments and fixed higher-order moments.

Comparison of moment morphing\(^a\) with vertical morphing\(^b\) and integral morphing\(^c\) using the Kolmogorov-Smirnov distance between interpolated and true shape as metric.

\(^a\)M. Baak, S. Gadatsch, R. Harrington and W. Verkerke 2014.
\(^b\)E.g. K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke 2012, and Ref. \(^a\).
\(^c\)A.L. Read 1999.
Deviations from exact prediction due to

- (Local) non-linearity of the first and second moment
 - Approximate by piece-wise linear interpolation or higher order polynomial

- Any dependence on higher moments
 - Empirically accounted for, but accuracy depends on distributions
- Numerically stable and fast
 - Caching of expensive components (numerically computed moments, ...)
 - No need to compute normalization of p.d.f.

- Implementation available in the **RooFit** models library in **ROOT**
Higgs boson rate in $H \rightarrow WW^*$

Simulated samples available in 5 GeV in m_H

ATLAS

$H \rightarrow WW^* \rightarrow l\nu l\nu$

- $\sqrt{s} = 7$ TeV, 4.5 fb$^{-1}$
- $\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$

*Obs (\(m_H = 128, \mu = 0.94\))

- Obs ± 1σ
- Obs ± 2σ
- Obs ± 3σ

Higgs boson CP measurement

Combination of 1d ($H \rightarrow WW^*$) and 2d ($H \rightarrow ZZ^*$) moment morphing

κ_{HV}/κ_{SM}

New algorithm to interpolate between Monte Carlo sample distributions

- Generic, simple, fast, stable, accurate
 - Binned histogram and continuous templates in arbitrary dimensions
 - Horizontal and vertical morphing
 - Self-normalized, caching of expensive objects
 - Exact or nearly exact for many typical applications
Backup

Two input distributions $f_1(x)$ and $f_2(x)$ with cumulative distribution functions

$$F_1(x) = \int_{-\infty}^{x} f_1(x')dx' \quad \text{and} \quad F_2(x) = \int_{-\infty}^{x} f_2(x')dx'$$

Find x_1 and x_2 for which

$$F_1(x_1) = F_2(x_2) = y \equiv \bar{F}(x) \quad \text{with} \quad x = ax_1 + bx_2$$

Interpolated distribution is

$$\bar{F}^{-1}(y) = a\bar{F}_1^{-1}(y) + b\bar{F}_2^{-1}(y) \quad \Leftrightarrow \quad \bar{f}(x) = \frac{f_1(x_1)f_2(x_2)}{af_2(x_2) + bf_1(x_1)}$$