
Device logic Utilities

Address space moduleConfiguration module

OPC-UA server toolkit (C++) – Unified Automation

Logging

Security
(X509

certificate
handling)

XML
configuration

Server
meta-

information

Device logic (custom code)

Hardware access layer (device I/O) – provided by vendor

Common
namespace
items and

namespace
utilities

XML
config

file

Describing the structure and object layout of the server using design file

CHEP 2015
21st International Conference on Computing in High Energy and Nuclear Physics

April 13-17, 2015, Okinawa, Japan

Ab
st

ra
ct This paper describes a new approach for generic design and efficient development of OPC UA servers. Development starts with creation of a design file, in XML

format, describing an object-oriented information model of the target system or device. Using this model, the framework generates an executable OPC UA server
application, which exposes the per-design OPC UA address space, without the developer writing a single line of code. Furthermore, the framework generates
skeleton code into which the developer adds the necessary logic for integration to the target system or device.

The approach proved to be successful for many OPC UA servers created for ATLAS DCS (already in production) and beyond. It has been chosen to integrate
3rd party products into various control systems at CERN in cooperation with the suppliers. In this approach, design and development efforts are hugely
reduced, and the percentage of generated code can reach up to 90%. Applying a common approach also helped to easily delegate development tasks to
growing group of developers and to reduce maintenance costs.

A Generic Framework for Rapid Development of OPC UA Servers

o Open source: the Framework is under GPL license (though requiring non-open source UA toolkit)
o Build system: A robust build system (based on Cmake) is included. It is integrated with design file handling to automate development tasks.
o SCADA Integration: The framework generates OPC UA bindings to Siemens WinCC OA SCADA.
o Software management tools: The framework is capable of maintaining consistency of the source code, raising alerts when e.g. custom code was

forgotten to be added into version control system.
o Target deployment: The framework seamlessly integrates with RPM builder (for Linux).

Generation of majority of C++ source code, configuration schema, integration and development tools

o Only custom user code has to be written by a developer
o Whole Address Space module is 100% automatically generated
o Stubs of Device Logic source code are generated, enabling developers to provide

factual implementation without writing “a skeleton”
o Configuration module is 100% generated including configuration file schema and

configuration file loader and validator
o Generated code, generated stubs as well as overall architecture promotes

creation of robust software (type safety, adherence to standards, appropriate
error handling) as well as well-performing software (multi-threaded processing is
natively supported, see above)

o Technologies used: XML, XSLT, Python, shell scripts

Example config file: (corresponding to design above)

<PowerSupply name=“powerSupply1”>
<PowerSupplyChannel name=“channel1”>
<PowerSupplyChannel name=“channel2”/>

</PowerSupply>

Example design file:

<class name=“PowerSupplyChannel”>
<cachevariable name=“current” dataType=“Float”/>

</class>

<class name=“PowerSupply”>
<sourcevariable name=“state” dataType=“Int”/>
<hasobjects class=“PowerSupplyChannel”/>

</class>

o To monitor and control hardware via OPC-UA requires an OPC-UA
server; the server provides a software proxy for the hardware which
is compatible with any standard OPC-UA client.

o Internally to the server, the hardware is often represented by a
hardware access layer; a device specific software component with a
proprietary (i.e. non-standard) interface.

o The OPC-UA server publishes an interface (the address space), in
standard OPC-UA vocabulary, this represents the functionality of the
underlying hardware.

o The approach is platform-independent; this project supports
Windows and Linux for X86 and X86-64 CPUs and Linux on ARM CPUs

OPC-UA client OPC-UA client OPC-UA client

Hardware Hardware Hardware

Commercial toolkit

Common components
made at CERN

Hardware specific logic,
Expected ~80/20
CERN/vendor split

100% vendor

OPC-UA server
generator framework

Piotr Nikiel, Ben Farnham, Stefan Schlenker (CERN, Geneva, Switzerland)
Viatcheslav Filimonov (PNPI, Gatchina, Leningrad District, Russia)

ROOT

PowerSupply
status : OpcUa_UInt32

0..*

PowerSupplyChannel
current : OpcUa_Double

0..*

U
M

L
vi

su
al

iza
tio

n
di

ag
ra

m

(a
ut

o-
ge

ne
ra

te
d)

O
PC

 U
A

Cl
ie

nt
 v

ie
w

(h

er
e:

 U
aE

xp
er

t)

Hardware Device logic Generated AddressSpace

So
ur

ce
Va

ria
bl

e
Ca

ch
eV

ar
ia

bl
e

Device

Device

Device Logic Object

Device Logic Object

device
updates data

Address Space Object Address Space

Address Space

handleUpdate()
Device-specific message or function call

setSomeValue() update values

In
te

rn
al

 h
an

dl
in

g
of

 v
ar

ia
bl

es
 (a

ut
o-

ge
ne

ra
te

d)
Se

qu
en

ce
 d

ia
gr

am
s

device replies
to the request

SourceVariable
IO Manager

handleUpdate()

value sent back

read value

N
ew

 IO
 Jo

b
(s

ep
ar

at
e

th
re

ad
)

beginRead()

Read():

Prepare C.V.
Send request

Wait on
C.V.

finishRead()

C.V. is
notified

Device specific
request message
Or asynchronous
function call

Device specific
reply message
Or asynchronous
function call

generated automatically on build
generated on request
overwrites
merges

C++ code

XSD

SCADA scripting

Build info

AddressSpace Class Header

AS Class Body

Visualisation (UML, ...)

Configuration.xsd

Configuration.{hxx,cxx}

Device Class Body

Device Class Header

Configurator.cpp

Source Variables glue logic

Information model

Module build information

DRoot.{cpp,h}

Test code

SCADA integration

Module build information

DESIGN FILE

	Slide Number 1

