Benchmarking and accounting for the (private) cloud

Jerome Belleman, Daniel Pek, Ulrich Schwickerath,

Special thanks to the CERN Cloud team
Outline

- CERNs batch farm
Outline

- CERNs batch farm
- Schema to classify worker nodes by performance
Outline

- CERNs batch farm
- Schema to classify worker nodes by performance
- Benchmarking
Outline

• CERNs batch farm
• Schema to classify worker nodes by performance
• Benchmarking
• Accounting
Outline

- CERNs batch farm
- Schema to classify worker nodes by performance
- Benchmarking
- Accounting
 - Traditional batch accounting
Outline

- CERNs batch farm
- Schema to classify worker nodes by performance
- Benchmarking
- Accounting
 - Traditional batch accounting
 - Cloud accounting
CERNs LSF batch farm

- CERN LSF batch farm:
 - About 4300 nodes in total, ~3700 VMs
 - About 3600 in public resources
 - Got rid of old physical worker nodes
 - 93% on virtual machines now
 - Traditional GRID worker nodes
 - Traditional APEL based accounting (HS06)

- In addition dedicated IaaS projects for the experiments
CERNs LSF batch farm

- **CERN LSF batch farm:**
 - About 4300 nodes in total, ~3700 VMs
 - About 3600 in public resources
 - Got rid of old physical worker nodes
 - 93% on virtual machines now
 - Traditional GRID worker nodes
 - Traditional APEL based accounting (HS06)
- In addition dedicated IaaS projects for experiments

Public resources, Including WLCG
CERNs LSF batch farm

Heterogenous hardware

- Complexity partly hidden by virtualization
- Hypervisor and its performance is hidden
- Still large spread of per core performance
Classification of worker nodes

- **Bare metal times**
 - Procurement of chunks of identical machines
 - Classify by procurement (vendor, procurement time, sub-class ...)
 - Benchmark one or few sample machines

- **Virtual worker nodes**
 - No information available about the hypervisor
 - VMs can change name
 - Benchmarking each of them every time is expensive
 - Need a new way to classify machines by performance
Classification of worker nodes

Example: a6_8_1512h23_266
AMD based virtual machine
- SLC6
- 8 cores
- CPU-ID 1512h, see below
- CPU speed 2300 MHz
- Default memory speed 266

Remark: Details of the machine:

- MemSpeed = unknown
- CpuSpeed = 2.3 MHz
- CpuVendor = AMD
- Cores = 8
- CPUFamily = 21 = 0x15h
- CPUModel = 1 = 0x1h
- CPUStepping = 2 = 0x2h

=> CPUID = 1512h

http://world.std.com/~swmcd/steven/tech/cpu.html
Benchmarking by class

• Pre-requisites:
 – Enable CPU pass-through (else different classes are mapped to the same class)
 – Don't over-commit CPU resources
 – Tune KVM for best CPU performance

• Benchmark
 – Ensure the hypervisors are fully loaded
 • Easy for new batches of hardware coming in
 • Benchmark each VM to get statistics
 – Be pessimistic when interpreting the results
Benchmarking by class

Limitations:

- The memory speed is not passed to the VM by KVM
- A conservative default of 266MHz is assumed
- Different memory speeds yield to a double-peak structure
Traditional batch accounting

- WLCG - Accounting via APEL and SSM
- Local database holding accounting data
- LSF job_finish records are sent to the local database
- Virtual and physical worker nodes look the same
Cloud accounting: general case

- Still experimental!
- No access to the VMs by the site
- Classify by performance of the hypervisor for now
- Loss of information for short lived VMs (loss of link to hypervisor after the VM is gone)
Cloud accounting: general case

- **Work in progress:**
 - Inject performance info from the hypervisor to ceilometer while the VM is running

- **Possible future work:**
 - Inject all information we need to do the classification as for the batch case
 - Unclear how to do this in a general case
Conclusions

- Established a new classification schema for batch worker nodes
 - Using only information available from the machine itself
 - Works reasonably well
 - Used in production both for physical and virtual worker nodes

- Extension to the general case
 - Non-trivial because it's not the VMs which report in this case
 - Requires additional configuration in OpenStack
 - Work in progress