
13.04.2015

Fast TPC online tracking on GPUs and
asynchronous data-processing in the ALICE HLT to

facilitate online calibration
Dr. David Rohr for the ALICE Collaboration

drohr@cern.ch
Frankfurt Institute for Advanced Studies

CHEP 2015, Okinawa, 13.4.2015
Funded by:

1 13.04.2015

• The Large Hadron Collider (LHC) at
CERN is today‘s most powerful
particle accelerator colliding protons
and lead ions.

• ALICE is one of the four
major experiments,
designed primarily for
heavy ion studies.

• The Time Projection
Chamber (TPC) is ALICE’
primary detector for
track reconstruction.

• The High Level trigger
(HLT) is an online compute
farm for real-time data
reconstruction for ALICE.

ALICE at the LHC

2 13.04.2015

• Reconstruction of particle trajectories in the
TPC is computationally very expensive:

− Several thousand tracks per event.
− High combinatorial complexity.

• As a gas-based detector, the TPC is sensitive

to calibration.
• Environment variables such as temperature and

pressure affect the calibration.
• The conditions change during a run.

 Challenging tasks for the HLT:

− Needs fast reconstruction algorithm for online operation.
− Detectors must be continuously calibrated online.

Online calibration can save compute resources in the future by removing some calibration passes.

Challenges in this talk

3 13.04.2015

• HLT reconstruction is performed in processing chains.
− Sources (detector links) feed data in the chain.
− Sinks (output links to DAQ) collect the results.
− In between, processing components can process data / (parts of) events.
 The HLT is a directed graph without loops. (Original design decision for technical reasons.)

• Models: local reconstruction first, combine data for global reconstruction, use results of
one component for two tasks, load-balancing by round-robin distribution

The HLT Framework

TPC Link 1 TPC Clus-
ter Finder TPC Track

Reconstruction
TPC Link 2

Event
Building

TPC Clus-
ter Finder

ITS Link 1

.

.

.

.

.

.
ITS

Reconstruction

Output
Link 1

Output
Link 2

round-robin

Monitoring

result used 2 times

local reconstruction

combine data

4 13.04.2015

• Online calibration would need to feed back data into the reconstruction.
 Problem: HLT Framework does not support loops. (Task A)

• Additional Input for sensors needed (temperature / pressure).
 Problem: data transport and synchronization event-based, sensor data not event-based. (Task B)

• Calibration needs real-time tracking.
 Fast HLT tracking needed. (Task C)

Challenges for Online Calibration

TPC Link 1 TPC Clus-
ter Finder TPC Track

Reconstruction
TPC Link 2

Event
Building

TPC Clus-
ter Finder

ITS Link 1 ITS
Reconstruction

Output
Link 1

Output
Link 2

Monitoring

Calibration

Sensors

5 13.04.2015

• HLT processing based on events.
• Components process one event after another.
 Long running infrequent tasks could make the event buffer overrun, even if the average processing

time is short.
 This will stall the entire HLT chain.
 Events will be lost.
 Task D

• Example in calibration:
• Accumulating events first.
• Long-running fit later.

Challenges for Online Calibration

Pr
oc

es
s

Ev
en

t

time

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Long-running task

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Incoming Events

buffer overrun
events dropped

event
queue

maximum
queue size

6 13.04.2015

We have identified four necessary prerequisites for online calibration:
• Task A: Framework capability to feed back data (loops).
• Task B: Custom data sources in the framework.
• Task C: Fast track reconstruction.
• Task D: Infrequent long-running tasks in a component.

The prerequisites as above (except C) are formulated abstractly – not related to calibration.
• We want to implement them as standalone features because they can be used in other scenarios

as well.

We want to introduce these capabilities in the least invasive way.
• The HLT framework was proven stable in run 1.
• We want to avoid serious changes.
• We try to implement the new features on a component level instead of the framework level.

Overview

7 13.04.2015

• Solution (Task D): Split processing in synchronous
and asynchronous part.

− Frameworks spawns an asynchronous thread.
− It provides simple interface to

the component for offloading
asynchronous tasks.

− It handles the synchronization.

Asynchronous Side Tasks

Pr
oc

es
s

Ev
en

t

time

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Long-running task

Incoming Events

event
queue

maximum
queue size

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

Pr
oc

es
s

Ev
en

t

asynchronous
part started

asynchronous
part finished

8 13.04.2015

• Solution (Task C): Use GPUs for fast track reconstruction.
− GPU tracker was successfully used in ALICE run 1 on 64 GPU-enabled nodes.

− D. Rohr: “ALICE TPC Online Tracker on GPUs for Heavy-Ion Events”, in 13th International Workshop on Cellular Nanoscale Networks and their
Applications, pp. 298–303 [2012].

− D. Rohr, S. Gorbunov, A. Szostak, M. Kretz, T. Kollegger, T. Breitner, T. Alt: “ALICE HLT TPC Tracking of Pb-Pb Events on GPUs”, Journal of
Physics: Conference Series, vol. 396 , no. 1 : p. 12044 [2012].

− S. Gorbunov, D. Rohr, K. Aamodt, T. Alt, H. Appelsh, A. Arend, M. Bach, B. Becker, T. Breitner, et al.: “ALICE HLT High Speed Tracking on GPU”,
IEEE Transactions on Nuclear Science, vol. 58 , no. 4 [2011].

− GPU Tracker based on NVIDIA CUDA  Vendor lock
− New GPUs with new features available in the meantime  Possible improvements to GPU tracking

Tracking on GPUs

Event reconstructed by GPU
tracker during ALICE run 1

9 13.04.2015

• CPU and GPU tracker (in CUDA) share common source files.
• Specialist wrappers for CPU and GPU exist, that include these common files.

 Same source code for CPU and GPU version
− The macros are used for API-specific keywords only.
− The fraction of common source code is above 90%.

common.cpp:
__DECL FitTrack(int n) {
….
}

cpu_wrapper.cpp:
#define __DECL void
#include ``common.cpp``

void FitTracks() {
 for (int i = 0;i < nTr;i++) {
 FitTrack(n);
 }
}

cuda_wrapper.cpp:
#define __DECL __device void
#include ``common.cpp``

__global void FitTracksGPU() {
 FitTrack(threadIdx.x);
}

void FitTracks() {
 FitTracksGPU<<<nTr>>>();
}

Common Tracker Source Code

10 13.04.2015

• For the first GPU tracker implementation, CUDA was the only option.
• CUDA was the only GPU framework supporting C++, and AliRoot needs C++.
• OpenCL (currently the main alternative) was new, only early beta SDKs available.

• Now, AMD provides a stable OpenCL SDK with C++ kernel language extensions.
• Adaption possible.
• OpenCL and CUDA very similar.

• We can easily add other versions, by constructing appropriate wrappers.

• Wrapper can be adapted from CUDA wrapper by replacing language specific keywords, e.g.
__global  __kernel.

• The problem is: Our OpenCL code uses AMD’s C++ extensions and can thus run on AMD

GPUs only. However:
• We can still use CUDA on NVIDIA GPUs.
• New OpenCL standard may specify C++ kernel language.s

CUDA, OpenCL and C++

11 13.04.2015

• Main Problem for OpenCL adaptation:
• Pointers in OpenCL have address type qualifiers: global memory, private memory, etc.

• Tracker objects can reside in all address spaces. (Important for optimizations!)

• Address type qualifier in function parameters can be treated with templates:
• void foo(int* bar);  template <class T> void foo(T bar);

• But: this cannot work for the return type, because overloaded functions cannot be
distinguished by return type only.
• template <class T> T foo(); DOES NOT WORK

• Two solution:

• Assign an address type qualifier to objects themselves.
• Use generic address space specified by OpenCL 2.0

Adaptation for OpenCL

12 13.04.2015

• Important new GPU feature relevant for GPU tracker:
• GPUs can run multiple different kernels in parallel.
• This can improve GPU utilization. Preliminary tests show 15% improvement already.

• GPU tracking time on central PbPb event.

• NVIDIA GTX480 (Fermi) 448 shader, 1215 MHz 174 ms (used in the old HLT)
• NVIDIA GTX780 (Kepler) 2304 shader, 863 MHz 155 ms
• NVIDIA Titan (Kepler) 2688 shader, 837 MHz 146 ms
• AMD S9000 (Tahiti) 1792 shader, 900 MHz 145 ms (used in the new HLT)
• NVIDIA GTX980 (Maxwell) 2048 shader, 1126 MHz 120 ms

• With both NVIDIA and AMD as possible vendors, we are no longer vendor-locked!

• New GPUs with more shaders not optimally used yet. We assume a speed benefit
of up to 30% by further tuning the tracker for the new GPU chips.

Performance on New GPUs

13 13.04.2015

Custom Data Sources

• An intermediate component (Event Trigger) scans for events, by receiving 0-payload packages.
• It can trigger the input of custom data sources. (Solution to Task B)
• Allows synchronous input of custom sources, by using current event number.

TPC Link 1 TPC Clus-
ter Finder TPC Track

Reconstruction
TPC Link 2 TPC Clus-

ter Finder

ITS Link 1

.

.

.

.

.

.
ITS

Reconstruction

Output
Link 1

Output
Link 2

Event
Trigger

Custom
Source 1

Custom
Source 2

Event
Building

Calibration

In this example, custom source 1
provides sensor data such as temperature
and pressure to the calibration component

on a per-event level.

Sensor
Data

14 13.04.2015

• We use the asynchronous tasks introduced as solution to “Task D”, to create an
asynchronous side queue for feeding back data. (Solution to Task A.)

− Data transport via Zero-MQ.
− Loop channel is asynchronous on component level.
 Framework remains totally unchanged.
− Feedback timescale in intervals of few seconds.

(Calibration requirement is some minutes.)

Asynchronous Side Channel

TPC Link 1 TPC Clus-
ter Finder TPC Track

Reconstruction
TPC Link 2

Event
Building

TPC Clus-
ter Finder

ITS Link 1 ITS
Reconstruction

Output
Link 1

Output
Link 2

Monitoring

Calibration

Zero Message Queue (Zero-MQ)
Asynchronous Side Channel

For reproducibility, we store which
calibration object we used for every event.

15 13.04.2015

• We have identified four requirements in the HLT framework needed for online
calibration.

• We have presented solutions to these requirements.
• All solutions are available on component-level.
  No changes to the HLT framework needed.
− Asynchronous data channel via ZeroMQ (implementation ongoing)
− Custom source input in framework (implemented)
− Fast tracking on GPU with OpenCL (implemented, further tuning possible)
− Asynchronous tasks inside component (implemented)

• In parallel, development of the calibration component itself is work in progress

by HLT and Offline groups.

Summary

	Fast TPC online tracking on GPUs and asynchronous data-processing in the ALICE HLT to facilitate online calibration
	ALICE at the LHC
	Challenges in this talk
	The HLT Framework
	Challenges for Online Calibration
	Challenges for Online Calibration
	Overview
	Asynchronous Side Tasks
	Tracking on GPUs
	Common Tracker Source Code
	CUDA, OpenCL and C++
	Adaptation for OpenCL
	Performance on New GPUs
	Custom Data Sources
	Asynchronous Side Channel
	Summary

