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• The Large Hadron Collider (LHC) at 
CERN is today‘s most powerful 
particle accelerator colliding protons 
and lead ions. 

• ALICE is one of the four 
major experiments, 
designed primarily for 
heavy ion studies. 

• The Time Projection 
Chamber (TPC) is ALICE’ 
primary detector for 
track reconstruction. 

• The High Level trigger 
(HLT) is an online compute 
farm for real-time data 
reconstruction for ALICE. 

ALICE at the LHC 
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• Reconstruction of particle trajectories in the 
TPC is computationally very expensive: 

− Several thousand tracks per event. 
− High combinatorial complexity. 

 
• As a gas-based detector, the TPC is sensitive 

to calibration. 
• Environment variables such as temperature and 

pressure affect the calibration. 
• The conditions change during a run. 

 
 Challenging tasks for the HLT: 

− Needs fast reconstruction algorithm for online operation. 
− Detectors must be continuously calibrated online. 
 

Online calibration can save compute resources in the future by removing some calibration passes. 
 

Challenges in this talk 
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• HLT reconstruction is performed in processing chains. 
− Sources (detector links) feed data in the chain. 
− Sinks (output links to DAQ) collect the results. 
− In between, processing components can process data / (parts of) events. 
 The HLT is a directed graph without loops. (Original design decision for technical reasons.) 

• Models: local reconstruction first, combine data for global reconstruction, use results of 
one component for two tasks, load-balancing by round-robin distribution 

The HLT Framework 
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• Online calibration would need to feed back data into the reconstruction. 
 Problem: HLT Framework does not support loops. (Task A) 

• Additional Input for sensors needed (temperature / pressure). 
 Problem: data transport and synchronization event-based, sensor data not event-based. (Task B) 

• Calibration needs real-time tracking. 
 Fast HLT tracking needed. (Task C) 

 
 

Challenges for Online Calibration 
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• HLT processing based on events. 
• Components process one event after another. 
 Long running infrequent tasks could make the event buffer overrun, even if the average processing 

time is short. 
 This will stall the entire HLT chain. 
 Events will be lost. 
 Task D 
 

• Example in calibration: 
• Accumulating events first. 
• Long-running fit later. 

 

Challenges for Online Calibration  
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We have identified four necessary prerequisites for online calibration: 
• Task A: Framework capability to feed back data (loops). 
• Task B: Custom data sources in the framework. 
• Task C: Fast track reconstruction. 
• Task D: Infrequent long-running tasks in a component. 
 
The prerequisites as above (except C) are formulated abstractly – not related to calibration. 
• We want to implement them as standalone features because they can be used in other scenarios 

as well. 
 

We want to introduce these capabilities in the least invasive way. 
• The HLT framework was proven stable in run 1. 
• We want to avoid serious changes. 
• We try to implement the new features on a component level instead of the framework level. 

Overview 
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• Solution (Task D): Split processing in synchronous 
and asynchronous part. 

− Frameworks spawns an asynchronous thread. 
− It provides simple interface to 

the component for offloading 
asynchronous tasks. 

− It handles the synchronization. 

Asynchronous Side Tasks 
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• Solution (Task C): Use GPUs for fast track reconstruction. 
− GPU tracker was successfully used in ALICE run 1 on 64 GPU-enabled nodes. 

− D. Rohr: “ALICE TPC Online Tracker on GPUs for Heavy-Ion Events”, in 13th International Workshop on Cellular Nanoscale Networks and their 
Applications, pp. 298–303 [2012]. 

−  D. Rohr, S. Gorbunov, A. Szostak, M. Kretz, T. Kollegger, T. Breitner, T. Alt: “ALICE HLT TPC Tracking of Pb-Pb Events on GPUs”, Journal of 
Physics: Conference Series, vol. 396 , no. 1 : p. 12044 [2012]. 

− S. Gorbunov, D. Rohr, K. Aamodt, T. Alt, H. Appelsh, A. Arend, M. Bach, B. Becker, T. Breitner, et al.: “ALICE HLT High Speed Tracking on GPU”, 
IEEE Transactions on Nuclear Science, vol. 58 , no. 4 [2011]. 

− GPU Tracker based on NVIDIA CUDA                                Vendor lock 
− New GPUs with new features available in the meantime    Possible improvements to GPU tracking 

 
 

Tracking on GPUs 

Event reconstructed by GPU 
tracker during ALICE run 1 
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• CPU and GPU tracker (in CUDA) share common source files. 
• Specialist wrappers for CPU and GPU exist, that include these common files. 

 
 
 
 
 
 
 
 
 

 
 Same source code for CPU and GPU version 
− The macros are used for API-specific keywords only. 
− The fraction of common source code is above 90%. 

 

common.cpp: 
__DECL FitTrack(int n) { 
…. 
} 

cpu_wrapper.cpp: 
#define __DECL void 
#include ``common.cpp`` 
 
void FitTracks() { 
  for (int i = 0;i < nTr;i++) { 
    FitTrack(n); 
  } 
} 

cuda_wrapper.cpp: 
#define __DECL __device void 
#include ``common.cpp`` 
 
__global void FitTracksGPU() { 
  FitTrack(threadIdx.x); 
} 
 
void FitTracks() { 
  FitTracksGPU<<<nTr>>>(); 
} 

Common Tracker Source Code 
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• For the first GPU tracker implementation, CUDA was the only option. 
• CUDA was the only GPU framework supporting C++, and AliRoot needs C++. 
• OpenCL (currently the main alternative) was new, only early beta SDKs available. 

• Now, AMD provides a stable OpenCL SDK with C++ kernel language extensions. 
• Adaption possible. 
• OpenCL and CUDA very similar. 

 
• We can easily add other versions, by constructing appropriate wrappers. 

• Wrapper can be adapted from CUDA wrapper by replacing language specific keywords, e.g. 
__global  __kernel. 

 
• The problem is: Our OpenCL code uses AMD’s C++ extensions and can thus run on AMD 

GPUs only. However: 
• We can still use CUDA on NVIDIA GPUs. 
• New OpenCL standard may specify C++ kernel language.s 

CUDA, OpenCL and C++ 
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• Main Problem for OpenCL adaptation: 
• Pointers in OpenCL have address type qualifiers: global memory, private memory, etc. 

 
• Tracker objects can reside in all address spaces. (Important for optimizations!) 

• Address type qualifier in function parameters can be treated with templates: 
• void foo(int* bar);  template <class T> void foo(T bar); 

• But: this cannot work for the return type, because overloaded functions cannot be 
distinguished by return type only. 
• template <class T> T foo(); DOES NOT WORK 

 
• Two solution: 

• Assign an address type qualifier to objects themselves. 
• Use generic address space specified by OpenCL 2.0 
 

Adaptation for OpenCL 
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• Important new GPU feature relevant for GPU tracker: 
• GPUs can run multiple different kernels in parallel. 
• This can improve GPU utilization. Preliminary tests show 15% improvement already. 

 
• GPU tracking time on central PbPb event. 

• NVIDIA GTX480 (Fermi) 448 shader, 1215 MHz  174 ms   (used in the old HLT) 
• NVIDIA GTX780 (Kepler) 2304 shader, 863 MHz  155 ms 
• NVIDIA Titan (Kepler) 2688 shader, 837 MHz  146 ms 
• AMD S9000 (Tahiti) 1792 shader, 900 MHz 145 ms   (used in the new HLT) 
• NVIDIA GTX980 (Maxwell) 2048 shader, 1126 MHz 120 ms 

• With both NVIDIA and AMD as possible vendors, we are no longer vendor-locked! 
 

• New GPUs with more shaders not optimally used yet. We assume a speed benefit 
of up to 30% by further tuning the tracker for the new GPU chips. 
 

Performance on New GPUs 
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Custom Data Sources 

• An intermediate component (Event Trigger) scans for events, by receiving 0-payload packages. 
• It can trigger the input of custom data sources. (Solution to Task B) 
• Allows synchronous input of custom sources, by using current event number. 

TPC Link 1 TPC Clus-
ter Finder TPC Track 

Reconstruction 
TPC Link 2 TPC Clus-

ter Finder 

ITS Link 1 

. 

. 

. 

. 

. 

. 
ITS 

Reconstruction 

Output 
Link 1 

Output 
Link 2 

Event 
Trigger 

Custom 
Source 1 

Custom 
Source 2 

Event 
Building 

Calibration 

In this example, custom source 1 
provides sensor data such as temperature 
and pressure to the calibration component 

on a per-event level. 

Sensor 
Data 



14 13.04.2015 

• We use the asynchronous tasks introduced as solution to “Task D”, to create an 
asynchronous side queue for feeding back data. (Solution to Task A.) 

− Data transport via Zero-MQ. 
− Loop channel is asynchronous on component level. 
 Framework remains totally unchanged. 
− Feedback timescale in intervals of few seconds. 

(Calibration requirement is some minutes.) 

Asynchronous Side Channel 
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For reproducibility, we store which 
calibration object we used for every event. 
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• We have identified four requirements in the HLT framework needed for online 
calibration. 

• We have presented solutions to these requirements. 
• All solutions are available on component-level. 
  No changes to the HLT framework needed. 
− Asynchronous data channel via ZeroMQ (implementation ongoing) 
− Custom source input in framework (implemented) 
− Fast tracking on GPU with OpenCL (implemented, further tuning possible) 
− Asynchronous tasks inside component (implemented) 

 
• In parallel, development of the calibration component itself is work in progress 

by HLT and Offline groups. 

Summary 
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