

Jan Just Keijser
Nikhef/PDP
Amsterdam

ROOT/RooFIT optimizations
for Intel Xeon Phi

Keep this in mind while porting software:

“When teaching a pig how to dance, it is not important how well the pig dances. It's amazing that the pig dances at all.”
 (author unknown)

Step-like approach to optimizing ROOT/RooFIT

1. Port ROOT and RooFIT to Intel Xeon Phi (-mmic) architecture

2. Run stresstest benchmarks on regular Xeon E5 and Xeon Phi

3. Ensure all tests pass and all results match

4. Per source file: use Intel compiler flags to generate optimization
 and vectorization reports

 -O3 -vec-report=7 -qopt-report=5

5, Tune code by hand, add '#pragma omp' directives

6. Recompile

7. Rerun stresstest benchmarks

8. Go to step 3 and repeat.

This is a slow process!

Results

- Building ROOT for Xeon Phi is actually cross-compiling
to a different platform – all underlying libraries needed
to be ported as well

- All stresstests pass except one (compiler optimization
error)

- Current Xeon Phi performance is bad (single threaded!)

- Several Intel C/C++ compiler bugs found (& reported)

ROOT/RooFIT stress benchmark results - unoptimized

stressFit

stressGeometry

stressGraphics

stressHepix

stressHistoFit

stressHistogram

stressInterpreter

stressLinear

stressMathCore

stressMathMore

stressRooFit

stressRooStats

stressShapes

stressSpectrum

0 1000 2000 3000 4000 5000 6000 7000

Xeon Phi
Xeon E5-2620

ROOTMARKS

House of CardsVersions

Versions of all software components are
important:

- Scientific Linux 6.6

- Intel MPSS stack 3.4

- Intel C/C++ Composer XE compiler
v15.0.0.090

- Root 5.34.19 (with fixes applied)

Next steps:

- Wrinkle out remaining compiler mistakes/bugs

- Use Intel's VTune tools to find optimization hotspots

- Fix the hotspots, go back to step 3

	Slide 1

