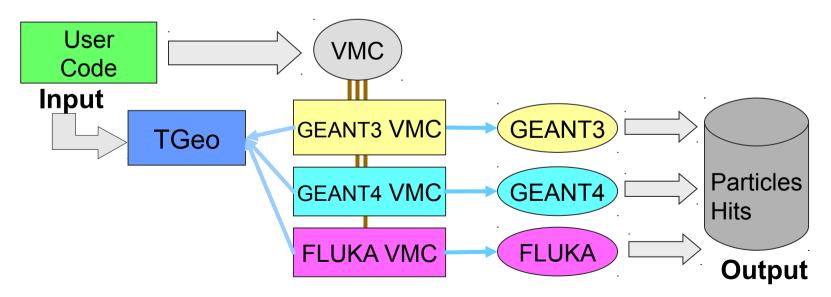


Geant4 VMC 3.0

I. Hřivnáčová¹⁾, A. Gheata²⁾

¹⁾ Institut de Physique Nucléaire (IPNO), Université Paris-Sud, CNRS-IN2P3; ²⁾ CERN

21st International Conference on Computing in High Energy and Nuclear Physics, 13 -17 April 2015, Okinawa



Outline

- VMC framework
- Geant4 VMC history
- New features in 3.0
 - Multithreading
 - CMake build
 - Migration to Root 6
 - Improved tests

Virtual Monte Carlo

- The Virtual Monte Carlo interface (VMC) allows to run simulation with different Monte Carlo codes from the same user application
 - Developed by the ALICE Offline Project and further included in ROOT
 - Reached stability during the last decade and have become a foundation for other detector simulation frameworks, the FAIR facility experiments framework being among the first and largest
 - http://root.cern.ch/drupal/content/vmc

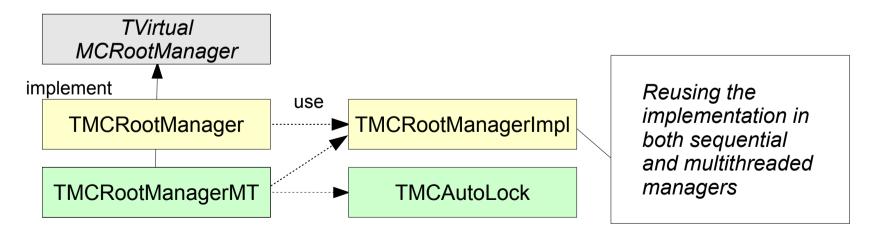
Geant4 VMC History

2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
0.2	X	1.	.X					2.x					3.x	
Oct 2002				Jul 2003			Dec 2006				Nov 2014			
v0.1				v1.0			v2.0				v3.0			
Firs	st vers	sion		conv	metry ertors og4,			G4Ro aviga			M	ultithr CMa Roc		
	v0.5			v1.9			2.15				3.1			
Root 3.03/09 Geant4 4.1				Root 3.05/06 Geant4 5.2			Root 5.14/00 Geant4 8.2			R	Root 5.34/23 and 6.02/0 Geant4 10.00.p03			

Towards Multithreading

- Development of Geant4 VMC MT started at end of 2011
 - Based on Geant4 MT prototype
- The prototype was described in CHEP 2012 publication:
 - I. Hřivnáčová 2012 J. Phys.: Conf. Ser. **396** 022024
- Geant4 VMC code was adapted for multithreading using the same approach as in Geant4 MT
 - Replacement of the singleton objects in Geant4 VMC with singletons per thread, including the main classes: TVirtualMC and TVirtualMCApplication
 - Applied modifications, as described in the Geant4MT User's Guide, to the Geant4 VMC classes, mainly in geometry and run categories
 - ROOT output implemented per thread and adapted to multithreading
- G4Root was not yet migrated in this prototype

Geant4 VMC 3.00.b01


- First (beta) Geant4 VMC version providing support for Geant4 multithreading mode was released on 14 March 2014
 - Based on Geant4 10.00.p01
 - The Geant4 VMC prototype was adapted to changes in the Geant4 interfaces for user application
- Migration of G4Root to multithreading
- Single source code for both sequential and multithreading modes
- All (5) VMC examples were migrated to MT
- Added examples main functions and CMake configuration files for building examples programs linked with all libraries
 - With previous versions the VMC examples can be run only from the ROOT session via a ROOT macro

Geant4 VMC 3.00

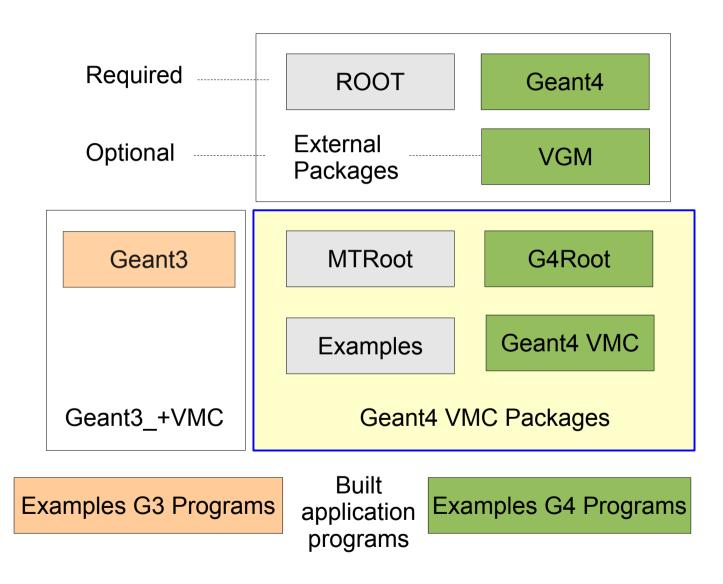
- Geant4 VMC version providing the support for Geant4 multithreading mode was released on 17 November 2014
 - Based on Geant4 10.00.p03
- Consolidated migration to Geant4 multithreading
- Complete move to CMake build system
 - Removal of "old" build system
- Migration to Root 6.02/xx
 - This involved building against C++11 standard

MTRoot

- A new set of classes which take care of locking critical operations (registering ROOT objects to trees etc.) in multithreading mode is introduced in new mtroot package
 - http://root.cern.ch/drupal/content/mtroot
- In previous Geant4 VMC versions, a single class Ex02RootManager for Root IO management was provided in examples

G4Root

- G4Root allows usage of ROOT geometry navigation in sequential and now also multithreading mode
 - Each worker thread has its own navigator
 - Fixed propagation of navigators pointers to stepping manager in multithreading mode
- Replaced the old G4Root test based on Geant4 example N06 with one based on OpNovice
 - Working also in multithreading mode
- Fixed G4Root navigation in geometries using ROOT assembly volumes
 - Leading to stuck particles getting killed


Migration of VMC Applications

- Users need to implement new functions of TVirtualMCApplication which are then used to clone the application and its containing objects on workers
- Creating of the objects on worker threads is then triggered from the Geant4 VMC classes
 - Examples and more detailed instructions are available from the VMC
 Web site
 class TVirtualMCApplication

```
// required for running in MT
virtual TVirtualMCApplication* CloneForWorker() const;
// optional
virtual void InitForWorker() const;
virtual void BeginWorkerRun() const;
virtual void FinishWorkerRun() const;
virtual void Merge(TVirtualMCApplication* localMCApplication);
```

VMC Packages

- Geant4 VMC
 besides its "own"
 set of classes (built in geant4_vmc
 library) includes
 also
 - G4Root
 - MTRoot
 - Examples
 - Each with different dependencies

CMake Build

- Replaced the "old" build system based on Makefiles in ROOT
- Inspired by Geant4 and VGM projects
- Build options:

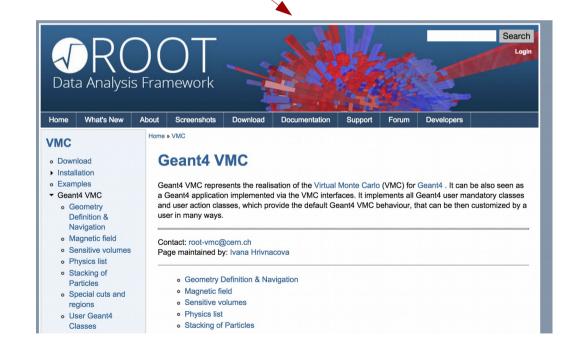
Geant4VMC_BUILD_P	P: G4Root, MTRoot, Geant4VMC, EXAMPLES	ON
Geant4VMC_USE_P	P: G4Root, VGM [OFF], GEANT4_UI, GEANT4_VIS, GEANT4_G3TOG4 [OFF]	ON
Geant4VMC_INSTALL_P	P: EXAMPLES	ON

- Configuration files, PConfig.cmake, for all included packages
 - Can be then used directly in the client projects, no need to define FindP.cmake
- Find packages FindP.cmake, P = Geant4, ROOT
- And some more utility files

Examples CMake Files

- Find and Use files for VMC and MC
 - FindP.cmake, UseP.cmake, P = VMC, MC
- Find [V]MC
 - Find all needed packages according to configuration options
- Use [V]MC
 - Set compiler definitions, includes and libraries for all packages according to configuration options
- The examples CMake file can then contain only examples specific setting
- Provided in both geant4_vmc/cmake and geant3/cmake and can be used in users VMC applications

Migration to ROOT 6


- Examples macros for loading libraries, load_g3|4.C, separated from run macros, run_g3|4.C
 - Required for Cling
- C++11
 - Minor fixes were needed in Geant4 VMC code to get it compiling with C++11 standard, required with ROOT 6
- CMake configuration files
 - Updated generation of dictionaries for changes in ROOT 6
 - Added generation of "rootmaps" which enable library autoloading: no need for explicit library loading via ROOT gSystem object

Tests

- Test suites shell scripts:
 - test_suite.sh 21 test configurations run from the ROOT session
 - test_suite_exe.sh the same tests run from examples programs
 - test_physics_lists.sh test all Geant4 available physics lists
- Improvements in 3.0:
 - Added a possibility to select Geant3/Geant4 test only via arguments
 - Added summary messages and return codes (they allow automatically evaluate the result of the tests)
 - Possibility to define a build directory via arguments
- Thanks to Oliver Freyermuth, Physics Institute of the University of Bonn for testing and contribution to CMake build, examples test suites and ROOT 6 migration

User Support

- The Web site integrated in ROOT Drupal
 - https://root.cern.ch/drupal/content/geant4-vmc
- New documentation pages
 - Installing geant4_vmc
 - Installing and Running Examples
 - Multithreaded processing
- Release notes with a detailed description of changes for all versions
- The JIRA VMC project for bug reports since October 2014

Conclusions

- Geant4 VMC 3.0, multithreading capable, is available since November 2014
 - A consolidated version 3.1 based on Geant4 10.01 since December 2014
- The interest in Geant4 multithreading in both ALICE and FAIR
 - Migration of FairRoot framework to multithreading in progress
 - Ongoing ALICE tests with a multithreading prototype based on a VMC example with realistic ALICE geometry, magnetic field, primary event generator and simplified TPC hits
- Improvements in build system and testing