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Introduction 

•  Traditional way for VOs to run work at grid sites 
–  Experiments submit pilot jobs to CEs 
–  CEs submit the pilot jobs to the local batch system 
–  Pilot jobs run on the batch system, launch pilot framework 
–  Pilot framework pulls down payload jobs 

•  Alternative is the vacuum model 
–  Sites automatically create VMs 

•  No CEs required, no BDII required, … 

–  VMs contextualized for each required experiment 
•  Contextualization provided by experiments 

–  VMs launch the pilot framework 
–  Pilot framework pulls down the payload jobs 
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Introduction 

•  Implementations of the vacuum model 
–  Vac  [resources dedicated to the vacuum model] 

•  Machines setup as hypervisors running the Vac software 

–  Vcycle  [existing cloud resources] 
•  Works with clouds, e.g. OpenStack 
•  Service instantiates VMs for each experiment 

•  What about an existing batch system? 
–  Can we use ideas of the vacuum model with an existing batch system? 
–  Make use of existing batch resources for both: 

•  Traditional grid jobs (running directly on the physical worker nodes) 
•  Jobs run in VMs using the vacuum model 

–  Avoids static partitioning, e.g. batch + Vac 

•  HTCondor has a “VM universe” 
–  Jobs can be VMs 
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Aims 

•  Consistency with Vac/Vcycle 
–  Should work with existing experiment user data created for Vac/

Vcycle without modification 
–  Should have similar features, e.g. “back off”, caching of images, … 

•  Use existing features of HTCondor as much as possible 
–  Job hooks, job router daemon, file transfer plugins, condor_chirp, … 

•  No significant changes to worker nodes 
–  But some changes unavoidable 

•  Libvirt installed, libvirtd running 
•  Some additional HTCondor configuration & scripts run as job hooks 

–  Easy to deploy via Quattor, Puppet, etc 

•  “bare metal” batch jobs & VMs on the same machines 
–  Resource usage of each can be limited by cgroups 

•  E.g. CPU, memory 
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Overview 

•  Additional HTCondor configuration added to a machine 
running a schedd 
–  Jobs (VMs) created here 

•  Single configuration file for the vacuum 
–  Specifies configuration for each vmtype 

•  Usually one vmtype per experiment 

–  User data obtained from a URL provided by each experiment 
–  Image can be a local file on the schedd or a URL 

•  VMs are created regularly for each vmtype 
–  When there is no work or failures for VMs of a particular vmtype, not 

many VMs are created 
–  When there is work, more VMs are created 
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Configuration 

•  Uses a config file almost identical to Vac 
!
[vmtype atlas]!
user_data_option_queue = RAL-LCG2_VAC!
user_data_option_default_se = srm-atlas.gridpp.rl.ac.uk!
user_data_option_cvmfs_proxy = http://squid04.gridpp.rl.ac.uk:3128!
user_data_file_hostcert = /scratch/Vac/ATLAS/hostcert.pem!
user_data_file_hostkey = /scratch/Vac/ATLAS/hostkey.pem!
user_data = https://www.gridpp.ac.uk/vac/atlas/user_data!
vm_model = cernvm3!
root_image = https://www.gridpp.ac.uk/vac/atlas/cernvm3.iso!
rootpublickey = /scratch/Vac/root.pub!
heartbeat_file = vm-heartbeat!
heartbeat_seconds = 600!
max_wallclock_seconds = 172800!
log_machineoutputs = True!
accounting_fqan = /atlas/Role=NULL/Capability=NULL!
htcondor_cpus = 1!
htcondor_memory = 3200!
htcondor_failure_rate_threshold = 0.001!
htcondor_accounting_group = group_ATLAS.prodatls!
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Creating VMs 

•  HTCondor has a feature to allow worker nodes to pull work 
rather than to have work pushed to them 
–  Fetch work hooks 

•  Limitations 
–  Cannot be used with VM universe jobs 
–  Since the negotiator isn’t involved in deciding what jobs to run, 

fairshares won’t be respected 

•  Alternative 
–  Simple script which submits jobs using HTCondor Python API 
–  Maintains job pressure, always n idle jobs, for each vmtype 
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Implementation of “back off” 

•  Don’t want to create VMs constantly 
–  Wastes resources 
–  Could overload experiment central task queues 

•  “Back off” 
–  If no work, jobs failing, or site misconfigured, wait before running 

more VMs 

•  Make use of the Job Router daemon 
–  From the manual: 

“The HTCondor job router is an add-on to the condor_schedd that 
transforms jobs from one type into another according to a configurable 
policy” 

–  Has a built-in throttle 
•  Usually used to prevent sending grid jobs to bad sites 
•  Definition of failure is configurable 

–  Provided information about status of VMs (shutdown code) is put into 
job ClassAds, can use job router to implement “back off” 9 
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Implementation of “back off” 

•  How it works 
–  The jobs created are configured so that they can’t run 

•  Requirements = false 

–  Job router 
•  Sets Requirements such that jobs can run 
•  Job router therefore is responsible for determining when VMs can run 

–  Has a built-in throttle for failing jobs 
•  Set expression used to determined whether a job failed to depend on the 

VM’s shutdown code 
•  If VMs don’t have any work or fail, this is regarded as failure 
•  FailureRateThreshold defines the maximum tolerated rate of job failures 

–  1 route per vmtype 
•  Routes can be generated automatically from vacuum config file 
•  Makes use of JobRouter ability to run an arbitrary script to dynamically 

generate routes 
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Creating VMs 
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Job creator condor_schedd 

condor_jobrouter 

vmtype 1 

vmtype 2 

… 

Jobs created for each VO 

Ensures VMs are not created if there are failures or there is no work 
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VM lifecycle 
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obtain disk image 

copy to job sandbox 

setup sparse disk for 
CVMFS cache 

create contextualisation iso 

setup NFS for /etc/
machineoutputs, … 

VM created 

updates time of last 
heartbeat from VM in job 

ClassAd 

VM shuts itself down or is 
removed 

add shutdown code & 
message to job ClassAd 

 copies disk images to 
quarantine area  

File transfer plugin Job prepare hook condor_vm-gahp; libvirt 

Job update 
hook; 
condor_chirp 

VM; PeriodicRemove expression Job exit hook; condor_chirp 

VM running 
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Target shares & accounting 

•  VMs are no different to any other jobs from HTCondor’s 
point of view 
–  Hierarchical group quotas configured on central manager node(s) 
–  Accounting group for each vmtype is specified in the vacuum config 

file 
•  Could have traditional grid jobs and vacuum VMs in the same accounting 

group 
•  Or could have separate accounting groups for vacuum VMs 

•  Accounting data sent directly to APEL central service 
–  APEL accounting records generated directly from information in the 

standard condor history files 
–  Sent to APEL using ssmsend (like ARC CE, APEL publisher node) 

13 



Your university or 
experiment logo here 

Traceability 

•  Central logging 
–  rsyslog.conf in the VMs is updated to contain information about site’s 

central loggers 
•  Done as part of contextualization, independent of VO 

–  Central logging starts before any of the VO scripts are run 

•  Quarantining of disk images 
–  Want to keep disk images for a specified time period 
–  Enables short-lived VMs to be investigated later if necessary 
–  After a VM is shutdown, disk images are copied to a quarantine area 

on the worker node 
•  Handled by job exit hook 
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Monitoring 

•  condor_q with a custom print format to show status of VMs 
!

-bash-4.1$ condor_q -pr vacuum.cpf!

!
id        vmtype    Start date   Run time    Status  ShutdownCode/message                                       !
83092.0   atlas     3/25 04:53   0+04:24:26  R                                                   !
83094.0   atlas     3/25 04:54   0+04:23:36  R                                                   !
83097.0   atlas     3/25 04:56   0+04:21:57  R  !
83189.0   cms       3/25 08:09   0+00:13:10  C       200 Success           !

83190.0   atlas     3/25 08:09   0+00:39:06  C       200 Success                                         !
83191.0   atlas     3/25 08:11   0+00:25:27  C       200 Success                                         !
83201.0   cms       3/25 08:19   0+00:10:45  C       300 Nothing to do                                   !
83202.0   atlas     3/25 08:20   0+00:19:08  C       200 Success                                         !
83203.0   cms       3/25 08:20   0+00:09:46  C       300 Nothing to do!
83241.0   gridpp    3/25 08:53   0+00:03:23  C       300 Nothing to do !
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In use 

•  When there is no work, VMs of each type are created 
regularly 
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Period with a small 
number of short-running 
ATLAS jobs  



Your university or 
experiment logo here 

In use 

•  When there is work for a VO, the number of running VMs 
increases 

•  As the available work is completed, the number of running 
VMs decreases 

17 



Your university or 
experiment logo here 

In use 

•  Multiple VOs running work 
–  Fairshares are handled in the usual way 

•  Negotiator decides what jobs (VMs) to run 
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Conclusion 

•  Have demonstrated an implementation of the vacuum model 
using HTCondor 
–  Almost all functionality derived from standard HTCondor features 

•  Future outlook 
–  Today VMs are a common way for experiments to run jobs at 

different sites in a standard environment 
•  Sites don’t need to install lots of software 

–  But in a batch system, can already have standard grid worker nodes 
•  Could have a vacuum model implementation without virtualization 

–  Also, there is growing interest in containers, in particular Docker 
•  Benefits include 

–  No virtualization overheads 
–  Faster startup times 

–  Soon HTCondor will have a “Docker universe” 
•  HTCondor vacuum model could easily be extended to use containers 

instead of (or as well as) VMs 
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