
Your university or
experiment logo here

Implementation of the vacuum model
using HTCondor

Andrew Lahiff
STFC Rutherford Appleton Laboratory

CHEP 2015

Okinawa, Japan

Your university or
experiment logo here 2

Outline

•  Introduction, aims & overview
•  How it works

–  Creating VMs
–  Implementation of “back off”
–  VM lifecycle
–  Target shares & accounting
–  Traceability

•  Some results
•  Conclusion

Your university or
experiment logo here

Introduction

•  Traditional way for VOs to run work at grid sites
–  Experiments submit pilot jobs to CEs
–  CEs submit the pilot jobs to the local batch system
–  Pilot jobs run on the batch system, launch pilot framework
–  Pilot framework pulls down payload jobs

•  Alternative is the vacuum model
–  Sites automatically create VMs

•  No CEs required, no BDII required, …

–  VMs contextualized for each required experiment
•  Contextualization provided by experiments

–  VMs launch the pilot framework
–  Pilot framework pulls down the payload jobs

3

Your university or
experiment logo here

Introduction

•  Implementations of the vacuum model
–  Vac [resources dedicated to the vacuum model]

•  Machines setup as hypervisors running the Vac software

–  Vcycle [existing cloud resources]
•  Works with clouds, e.g. OpenStack
•  Service instantiates VMs for each experiment

•  What about an existing batch system?
–  Can we use ideas of the vacuum model with an existing batch system?
–  Make use of existing batch resources for both:

•  Traditional grid jobs (running directly on the physical worker nodes)
•  Jobs run in VMs using the vacuum model

–  Avoids static partitioning, e.g. batch + Vac

•  HTCondor has a “VM universe”
–  Jobs can be VMs

4

Your university or
experiment logo here

Aims

•  Consistency with Vac/Vcycle
–  Should work with existing experiment user data created for Vac/

Vcycle without modification
–  Should have similar features, e.g. “back off”, caching of images, …

•  Use existing features of HTCondor as much as possible
–  Job hooks, job router daemon, file transfer plugins, condor_chirp, …

•  No significant changes to worker nodes
–  But some changes unavoidable

•  Libvirt installed, libvirtd running
•  Some additional HTCondor configuration & scripts run as job hooks

–  Easy to deploy via Quattor, Puppet, etc

•  “bare metal” batch jobs & VMs on the same machines
–  Resource usage of each can be limited by cgroups

•  E.g. CPU, memory

5

Your university or
experiment logo here

Overview

•  Additional HTCondor configuration added to a machine
running a schedd
–  Jobs (VMs) created here

•  Single configuration file for the vacuum
–  Specifies configuration for each vmtype

•  Usually one vmtype per experiment

–  User data obtained from a URL provided by each experiment
–  Image can be a local file on the schedd or a URL

•  VMs are created regularly for each vmtype
–  When there is no work or failures for VMs of a particular vmtype, not

many VMs are created
–  When there is work, more VMs are created

6

Your university or
experiment logo here

Configuration

•  Uses a config file almost identical to Vac
!
[vmtype atlas]!
user_data_option_queue = RAL-LCG2_VAC!
user_data_option_default_se = srm-atlas.gridpp.rl.ac.uk!
user_data_option_cvmfs_proxy = http://squid04.gridpp.rl.ac.uk:3128!
user_data_file_hostcert = /scratch/Vac/ATLAS/hostcert.pem!
user_data_file_hostkey = /scratch/Vac/ATLAS/hostkey.pem!
user_data = https://www.gridpp.ac.uk/vac/atlas/user_data!
vm_model = cernvm3!
root_image = https://www.gridpp.ac.uk/vac/atlas/cernvm3.iso!
rootpublickey = /scratch/Vac/root.pub!
heartbeat_file = vm-heartbeat!
heartbeat_seconds = 600!
max_wallclock_seconds = 172800!
log_machineoutputs = True!
accounting_fqan = /atlas/Role=NULL/Capability=NULL!
htcondor_cpus = 1!
htcondor_memory = 3200!
htcondor_failure_rate_threshold = 0.001!
htcondor_accounting_group = group_ATLAS.prodatls!

7

Your university or
experiment logo here

Creating VMs

•  HTCondor has a feature to allow worker nodes to pull work
rather than to have work pushed to them
–  Fetch work hooks

•  Limitations
–  Cannot be used with VM universe jobs
–  Since the negotiator isn’t involved in deciding what jobs to run,

fairshares won’t be respected

•  Alternative
–  Simple script which submits jobs using HTCondor Python API
–  Maintains job pressure, always n idle jobs, for each vmtype

8

Your university or
experiment logo here

Implementation of “back off”

•  Don’t want to create VMs constantly
–  Wastes resources
–  Could overload experiment central task queues

•  “Back off”
–  If no work, jobs failing, or site misconfigured, wait before running

more VMs

•  Make use of the Job Router daemon
–  From the manual:

“The HTCondor job router is an add-on to the condor_schedd that
transforms jobs from one type into another according to a configurable
policy”

–  Has a built-in throttle
•  Usually used to prevent sending grid jobs to bad sites
•  Definition of failure is configurable

–  Provided information about status of VMs (shutdown code) is put into
job ClassAds, can use job router to implement “back off” 9

Your university or
experiment logo here

Implementation of “back off”

•  How it works
–  The jobs created are configured so that they can’t run

•  Requirements = false

–  Job router
•  Sets Requirements such that jobs can run
•  Job router therefore is responsible for determining when VMs can run

–  Has a built-in throttle for failing jobs
•  Set expression used to determined whether a job failed to depend on the

VM’s shutdown code
•  If VMs don’t have any work or fail, this is regarded as failure
•  FailureRateThreshold defines the maximum tolerated rate of job failures

–  1 route per vmtype
•  Routes can be generated automatically from vacuum config file
•  Makes use of JobRouter ability to run an arbitrary script to dynamically

generate routes

10

Your university or
experiment logo here

Creating VMs

11

Job creator condor_schedd

condor_jobrouter

vmtype 1

vmtype 2

…

Jobs created for each VO

Ensures VMs are not created if there are failures or there is no work

Your university or
experiment logo here

VM lifecycle

12

obtain disk image

copy to job sandbox

setup sparse disk for
CVMFS cache

create contextualisation iso

setup NFS for /etc/
machineoutputs, …

VM created

updates time of last
heartbeat from VM in job

ClassAd

VM shuts itself down or is
removed

add shutdown code &
message to job ClassAd

 copies disk images to
quarantine area

File transfer plugin Job prepare hook condor_vm-gahp; libvirt

Job update
hook;
condor_chirp

VM; PeriodicRemove expression Job exit hook; condor_chirp

VM running

Your university or
experiment logo here

Target shares & accounting

•  VMs are no different to any other jobs from HTCondor’s
point of view
–  Hierarchical group quotas configured on central manager node(s)
–  Accounting group for each vmtype is specified in the vacuum config

file
•  Could have traditional grid jobs and vacuum VMs in the same accounting

group
•  Or could have separate accounting groups for vacuum VMs

•  Accounting data sent directly to APEL central service
–  APEL accounting records generated directly from information in the

standard condor history files
–  Sent to APEL using ssmsend (like ARC CE, APEL publisher node)

13

Your university or
experiment logo here

Traceability

•  Central logging
–  rsyslog.conf in the VMs is updated to contain information about site’s

central loggers
•  Done as part of contextualization, independent of VO

–  Central logging starts before any of the VO scripts are run

•  Quarantining of disk images
–  Want to keep disk images for a specified time period
–  Enables short-lived VMs to be investigated later if necessary
–  After a VM is shutdown, disk images are copied to a quarantine area

on the worker node
•  Handled by job exit hook

14

Your university or
experiment logo here

Monitoring

•  condor_q with a custom print format to show status of VMs
!

-bash-4.1$ condor_q -pr vacuum.cpf!

!
id vmtype Start date Run time Status ShutdownCode/message !
83092.0 atlas 3/25 04:53 0+04:24:26 R !
83094.0 atlas 3/25 04:54 0+04:23:36 R !
83097.0 atlas 3/25 04:56 0+04:21:57 R !
83189.0 cms 3/25 08:09 0+00:13:10 C 200 Success !

83190.0 atlas 3/25 08:09 0+00:39:06 C 200 Success !
83191.0 atlas 3/25 08:11 0+00:25:27 C 200 Success !
83201.0 cms 3/25 08:19 0+00:10:45 C 300 Nothing to do !
83202.0 atlas 3/25 08:20 0+00:19:08 C 200 Success !
83203.0 cms 3/25 08:20 0+00:09:46 C 300 Nothing to do!
83241.0 gridpp 3/25 08:53 0+00:03:23 C 300 Nothing to do !

15

Your university or
experiment logo here

In use

•  When there is no work, VMs of each type are created
regularly

16

Period with a small
number of short-running
ATLAS jobs

Your university or
experiment logo here

In use

•  When there is work for a VO, the number of running VMs
increases

•  As the available work is completed, the number of running
VMs decreases

17

Your university or
experiment logo here

In use

•  Multiple VOs running work
–  Fairshares are handled in the usual way

•  Negotiator decides what jobs (VMs) to run

18

Your university or
experiment logo here

Conclusion

•  Have demonstrated an implementation of the vacuum model
using HTCondor
–  Almost all functionality derived from standard HTCondor features

•  Future outlook
–  Today VMs are a common way for experiments to run jobs at

different sites in a standard environment
•  Sites don’t need to install lots of software

–  But in a batch system, can already have standard grid worker nodes
•  Could have a vacuum model implementation without virtualization

–  Also, there is growing interest in containers, in particular Docker
•  Benefits include

–  No virtualization overheads
–  Faster startup times

–  Soon HTCondor will have a “Docker universe”
•  HTCondor vacuum model could easily be extended to use containers

instead of (or as well as) VMs
19

Your university or
experiment logo here

Questions?

20

