
Messaging Services
for ATLAS Offline Data Quality

Peter Onyisi on behalf of the ATLAS Collaboration

CHEP, 14 Apr 2015

Messaging and ATLAS DQM14 Apr 2015 2

ATLAS DQ Performance
● Data Quality (DQ) system allows identification & flagging of

detector problems
– and, in the longer run, prevention/mitigation

● Fast turnaround, quick understanding of problems needed
for rapid physics analysis!

Very high efficiency for good data!

Messaging and ATLAS DQM14 Apr 2015 3

ATLAS Offline DQM

Reco
Monitoring

Histogram
Postprocessing

Histogram
DQM

Detector Control
System Archive

Defects DB

Runinfo Cache
GeneratorGood Run List

Generation

DCS
Calculator

Histogram
Storage

Web Display

History
Tool

Tier-0 Farm

TDAQ
Database

ATLAS Databases

DQM Runinfo
Cache

Shifter Defect
Entry Tool

Histogram
Metadata Cache

Histogram
Result Cache

Run Flagger/
Emailer

Standalone Tasks

Cherrypy serverDjango server

Shifter
Signoff

Cron Tasks

DQM Server

Luminosity

Messaging and ATLAS DQM14 Apr 2015 4

ATLAS Offline DQM

Reco
Monitoring

Histogram
Postprocessing

Histogram
DQM

Detector Control
System Archive

Defects DB

Runinfo Cache
GeneratorGood Run List

Generation

DCS
Calculator

Histogram
Storage

Web Display

History
Tool

Tier-0 Farm

TDAQ
Database

ATLAS Databases

DQM Runinfo
Cache

Shifter Defect
Entry Tool

Histogram
Metadata Cache

Histogram
Result Cache

Run Flagger/
Emailer

Standalone Tasks

Cherrypy serverDjango server

Shifter
Signoff

Cron Tasks

DQM Server

Luminosity

Messaging and ATLAS DQM14 Apr 2015 5

Program Coupling
Programs need to cooperate!

● New run finished?
– Mark run as unexamined by shifters

– Prepare signoff database to receive comments

– Run DCS Calculator on detector status information
● Tier-0 reconstruction/histogram processing complete?

– Remove intermediate histograms

– Upload history results
● Run period closed?

– Create good run list
● etc...

Distributed system (across nodes, programs, containers)
discourages/forbids strong coupling

Run 1: rendezvous via polling disk files
or database records

Serious problem with virtualized servers
none of the Linux file notification
systems really work for us

+ many clients outside of
central DQ infrastructure

Messaging and ATLAS DQM14 Apr 2015 6

Example: Histogram Web Interface

In progress reco: updates frequently
need to clear caches & remove temp
files when reco is done

run information:
keep cache up to date

reconstruction configuration:
cache run/reco metadata

Messaging and ATLAS DQM14 Apr 2015 7

Error Logging

● Many disparate logging systems
● Generally no error notification – only able to track down

errors once noticed externally
(shifter/first pass reconstruction [Tier-0] ops: “something is
wrong”)

Goals:
● Provide simple to use notification for serious errors

(panic(“A serious error has happened”) on call expert →
is notified by email/SMS/etc.)

● Collect logfiles centrally

Error notification:
Tier-0 postprocessing

Logging:
Standalone tasks: supervisord logs
Django services: Django logs
Cherrypy services: Cherrypy logs
Cron tasks: text files, emails
Tier-0 tasks: Tier-0 logging

Simplicity is essential requirement
we want non-experts to use the system

Messaging and ATLAS DQM14 Apr 2015 8

Solution: Messaging Queues

● Processes communicate by messages sent via a broker
– payload format generally up to user, we use JSON

● Processes do not need to know about each other
directly. Instead they publish to/listen to abstract
queues and topics

– Queue: like a letter: messages delivered to one reader
– Topic: like a town crier: messages delivered to whatever

process is listening
● Processes can be separated in space (different nodes)

and in time (message sending and delivery are
asynchronous for queues)

queue topic

Messaging and ATLAS DQM14 Apr 2015 9

Messaging Queues at CERN

● Many options for messaging brokers
● CERN has standardized on ActiveMQ

– Wrinkle: doesn't integrate at all with standard CERN auth
mechanisms (must use app-specific passwords or
certificates)

– for security reasons, creating queues requires coordination
with CERN IT

● Use STOMP protocol
– near-universal availability of client libraries for different

languages
● Piggybacking on servers set up for ATLAS Event Server

project
– message rate of few/minute is negligible perturbation

ØMQ in bad location on
complexity/benefit curve

Would need to support
RabbitMQ ourselves

Messaging and ATLAS DQM14 Apr 2015 10

Server Configuration

● Configuration has multiple load-shared brokers which
do not communicate

● Producers can connect to any broker but consumers
must connect to all

– Slightly non-trivial task. Hide in python library used by
clients.

brokersproducers consumers

Messaging and ATLAS DQM14 Apr 2015 11

Queues & Messages
● Queues:

– atlas.dqm.panic
– atlas.dqm.logging

● Topic:
– atlas.dqm.progress

● Message bodies are JSON; content is left up to specific
service

– e.g. Run Start notification: run number, start time, run type …
– panic: host, command name/args, traceback

● Logistically hard to set up multiple queues; use selector
mechanism to filter messages for clients

– Producers can generate arbitrary headers; clients filter on
headers using SQL syntax

– For all messages, define MsgClass (set to “DQ”) and MsgType
(e.g. “RunStart”)

Sends panic email with relevant information

Record in logfile server (future implementation)

Messages describing task completion

Messaging and ATLAS DQM14 Apr 2015 12

Sample Messages
DQ message

Run end message

Run information

Incremental DQ histogram merging

Reco/Tier-0
DQM config

Messaging and ATLAS DQM14 Apr 2015 13

Example Application: Panic Wrapper

● Simple Python wrapper (13 lines) launches arbitrary
tasks and sends panic message if status code != 0

– messaging brings central logging of messages, no
requirements on node email configuration

● Simple example of implementation

Messaging and ATLAS DQM14 Apr 2015 14

Services
Implemented:
● Run Start and Run End
● Tier-0 histogram processing status
● Panic queue & email (shared Python module to send

messages)

Allows:
● Much better awareness of severe errors
● An end to disk polling for updates

Planned:
● Central log archive
● “DQ Status Board”: use Redis key/value store to present

state of system

Also expect other applications to join

Detector-specific DQ monitoring
Luminosity monitoring
...

Messaging and ATLAS DQM14 Apr 2015 15

Experience

● It helps a lot that the STOMP Python client is part of
LCG distribution!

● Auth system of ActiveMQ somewhat painful
– requires use of robot certificates (not proxies!) or passwords

that must be kept secret somewhere …
– at least with CERN instance, PW auth is sent in the clear (!)
– from what we understand, RabbitMQ's auth is much more

flexible
● Libraries needed to simplify client writing

– in particular, subscription to multiple servers
● Otherwise, smooth sailing so far – very little

“impedance mismatch”
– e.g. any ATLAS python code can invoke panic in 2 lines

Messaging and ATLAS DQM14 Apr 2015 16

Summary

● Distributed nature of ATLAS offline DQM system
motivates a unified, robust, loosely coupled IPC system

– messaging queues fit the bill
● Starting deployment of a system built on CERN's choice

of ActiveMQ
– Python client available as part of LCG distribution,

lightweight
● No showstoppers found; system will give us new

capabilities

Advancing via new capabilities
Improve monitoring, reduce needed personnel

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

