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ATLAS DQ Performance
● Data Quality (DQ) system allows identification & flagging of 

detector problems
– and, in the longer run, prevention/mitigation

● Fast turnaround, quick understanding of problems needed 
for rapid physics analysis!

Very high efficiency for good data!
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Program Coupling
Programs need to cooperate!

● New run finished?
– Mark run as unexamined by shifters

– Prepare signoff database to receive comments

– Run DCS Calculator on detector status information
● Tier-0 reconstruction/histogram processing complete?

– Remove intermediate histograms

– Upload history results
● Run period closed?

– Create good run list
● etc...

Distributed system (across nodes, programs, containers) 
discourages/forbids strong coupling

Run 1: rendezvous via polling disk files
or database records

Serious problem with virtualized servers
none of the Linux file notification
systems really work for us

+ many clients outside of
central DQ infrastructure
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Example: Histogram Web Interface

In progress reco: updates frequently
need to clear caches & remove temp
files when reco is done

run information:
keep cache up to date

reconstruction configuration:
cache run/reco metadata
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Error Logging

● Many disparate logging systems
● Generally no error notification – only able to track down 

errors once noticed externally 
(shifter/first pass reconstruction [Tier-0] ops: “something is 
wrong”)

Goals:
● Provide simple to use notification for serious errors

(panic(“A serious error has happened”)  on call expert →
is notified by email/SMS/etc.)

● Collect logfiles centrally

Error notification:
Tier-0 postprocessing

Logging:
Standalone tasks: supervisord logs
Django services: Django logs
Cherrypy services: Cherrypy logs
Cron tasks: text files, emails
Tier-0 tasks: Tier-0 logging

Simplicity is essential requirement
we want non-experts to use the system



Messaging and ATLAS DQM14 Apr 2015 8

Solution: Messaging Queues

● Processes communicate by messages sent via a broker
– payload format generally up to user, we use JSON

● Processes do not need to know about each other 
directly. Instead they publish to/listen to abstract 
queues and topics

– Queue: like a letter: messages delivered to one reader
– Topic: like a town crier: messages delivered to whatever 

process is listening
● Processes can be separated in space (different nodes) 

and in time (message sending and delivery are 
asynchronous for queues)

queue topic
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Messaging Queues at CERN

● Many options for messaging brokers
● CERN has standardized on ActiveMQ

– Wrinkle: doesn't integrate at all with standard CERN auth 
mechanisms (must use app-specific passwords or 
certificates)

– for security reasons, creating queues requires coordination 
with CERN IT

● Use STOMP protocol
– near-universal availability of client libraries for different 

languages
● Piggybacking on servers set up for ATLAS Event Server 

project
– message rate of few/minute is negligible perturbation

ØMQ in bad location on
complexity/benefit curve

Would need to support
RabbitMQ ourselves
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Server Configuration

● Configuration has multiple load-shared brokers which 
do not communicate

● Producers can connect to any broker but consumers 
must connect to all

– Slightly non-trivial task. Hide in python library used by 
clients.

brokersproducers consumers
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Queues & Messages
● Queues: 

– atlas.dqm.panic
– atlas.dqm.logging

● Topic: 
– atlas.dqm.progress

● Message bodies are JSON; content is left up to specific 
service

– e.g. Run Start notification: run number, start time, run type …
– panic: host, command name/args, traceback

● Logistically hard to set up multiple queues; use selector 
mechanism to filter messages for clients

– Producers can generate arbitrary headers; clients filter on 
headers using SQL syntax

– For all messages, define MsgClass (set to “DQ”) and MsgType 
(e.g. “RunStart”)

Sends panic email with relevant information

Record in logfile server (future implementation)

Messages describing task completion
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Sample Messages
DQ message

Run end message

Run information

Incremental DQ histogram merging

Reco/Tier-0
DQM config
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Example Application: Panic Wrapper

● Simple Python wrapper (13 lines) launches arbitrary 
tasks and sends panic message if status code != 0 

– messaging brings central logging of messages, no 
requirements on node email configuration

● Simple example of implementation
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Services
Implemented:
● Run Start and Run End
● Tier-0 histogram processing status
● Panic queue & email (shared Python module to send 

messages)

Allows:
● Much better awareness of severe errors
● An end to disk polling for updates

Planned:
● Central log archive
● “DQ Status Board”: use Redis key/value store to present 

state of system

Also expect other applications to join

Detector-specific DQ monitoring
Luminosity monitoring
...
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Experience

● It helps a lot that the STOMP Python client is part of 
LCG distribution!

● Auth system of ActiveMQ somewhat painful
– requires use of robot certificates (not proxies!) or passwords 

that must be kept secret somewhere …
– at least with CERN instance, PW auth is sent in the clear (!)
– from what we understand, RabbitMQ's auth is much more 

flexible
● Libraries needed to simplify client writing

– in particular, subscription to multiple servers
● Otherwise, smooth sailing so far – very little 

“impedance mismatch”
– e.g. any ATLAS python code can invoke panic in 2 lines
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Summary

● Distributed nature of ATLAS offline DQM system 
motivates a unified, robust, loosely coupled IPC system

– messaging queues fit the bill
● Starting deployment of a system built on CERN's choice 

of ActiveMQ
– Python client available as part of LCG distribution, 

lightweight
● No showstoppers found; system will give us new 

capabilities

Advancing via new capabilities
Improve monitoring, reduce needed personnel
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