Protocol benchmarking on DPM

Use cases for HTTP and Xrootd

Fabrizio Furano Adrien Devresse Oliver Keeble (presenter) Valentina Mancinelli

Summary

- The protocols
- The storage system
- The infrastructure
- The tests
- The conclusions

HTTP/Day and Xrootd benchmarks

- Protocols have similar tech features, different implementations
- Our main use cases
 - Metadata hammering
 - Full file data transfers
 - Data analysis (inc vector reads)
- Are they comparable in performance?
- Is HTTP "good enough" for supporting scientific data processing?

DPM multiprotocol storage

- DPM storage is used for the tests
- Different frontends (xrootd, apache)
 - HTTPS redirects with a token to HTTP for access
- Sharing the metadata backend implementation
- Running on the same hardware, on the same disks
- We have been accumulating benchmark data daily for >1 year
 - Local metatdata tests
 - WAN access tests on the production infrastructure

HTTP/WebDAV

- Descriptive and readable, extensible
- Natural to interface to other Web-ish systems, e.g. federated identities
- Ubiquitous support
- Promotes accessibility (browsers)
- Supported by many data storage solutions: dCache, DPM, EOS, StoRM, Xrootd4
- Supports vector operations and transparent redirection (used in federation)
- Support has been integrated into ROOT via the Davix plugin

Xrootd

- Generic very scalable file server architecture, since 2003
- Efficient binary protocol
- Emphasis on low level performance
- Very well known in HEP
- Supported by many storage solutions: dCache, DPM, EOS, Xrootd4
- Supports vector operations and transparent redirection (used in federation)
- Native support in ROOT

Metadata: LAN tests

- Server/client on LAN
- Stresses the peak metadata performance by hammering a fixed set of 10K files
- Important testsuite for our implemention DPM performance improvements
- Useful for developers to spot regressions
- We keep the whole history, for years

Stat() through WebDAV

Stat() through Xrootd

Metadata

- Bottom line is that they are comparable
 - Differences of a few percent are not significant in this use case
- Differences may be due to
 - Relative complexity of implementation of the DPM plugins for the specific frontend
 - Intrinsic differences
 - Security models and protocol features
 - SSL session caching in davix
 - Connection multiplexing in xrootd

Access: WAN tests

- We run a ROOT analysis on an ATLAS data file, whose pattern we know
- ROOT TTreeCache is used for boosting performance
- Participating sites supply storage and compute
- Remote jobs are scheduled using the HammerCloud framework
- We share the reporting infrastructure with FAX
- Graphs show the pure IO time of these jobs
- Data averaged over many months
- Error bars represent the 95% confidence interval

Client at CERN, various servers

Median I/O time for a ROOT data analysis to DPM servers over different network latency-bandwith HTTPS -> HTTP **XROOTD** 350 RTT(ms) Site **CERN** 0.5 300 **RHUL** 16.1 23.5 SHEF /O time (less is better) 250 **TAIWAN** 298 **AUSTRALIA** 321 200 150 100 50

AUSTRALIA

TAIWAN

SHEF

CERN

RHUL

IOTime distribution

50 HC clients, server at CERN Median IO time for a ROOT data analysis from different WN on WLCG to DPM at CERN

Access tests

- Bottom line: comparable again
- The difference in the IO time is a few percent
- The differences are not systematic
- The IO time itself is a small part of the total for smaller latencies (<50ms)
- Storage systems and TCP stacks are configurable
 - Contributes to the variation between sites

Conclusion

- We have compared the two protocols for metadata and for access, on LAN and WAN
- According to our test cases, HTTP and xroot access to DPM have equivalent performance
- While systematic differences may exist for a particular site, they do not exist for the infrastructure
- Our 50 parallel WAN jobs are likely not enough to differentiate concurrency support
 - Needs tougher tests able to stress more the servers

