

3

Belle II production system

Rafal Grzymkowski (Institute of Nuclear Physics PAN) Radek Ludacka (Charles University) Hideki Miyake (KEK) Malachi Schram (PNNL)

for Belle II collaboration

2015, April 13th CHEP2015, OIST, Okinawa, Japan

Belle II computing model

• Variety types of resources: EMI, OSG, Cloud, local cluster...

Belle II computing model

Variety types of resources: EMI, OSG, Cloud, local cluster...
 → DIRAC solution

Basf2 and gBasf2

→Poster session A233 (T.Kuhr)

- Basf2 is our analysis software framework
 - Interface to distributed computing is given by gBasf2 (grid Basf2)
 - Provide transparent job execution on DC environment
 - Data input/output, file catalog/metadata registration...
 - Provide also collection of tools to handle job and data through DIRAC API (gb2 tools)

BelleDIRAC

- The extension module of DIRAC for Belle II
 - Not only simple extension but additional functionalities

Hideki MIYAKE, Belle II production system, CHEP2015

Big picture

- We should continuously handle many kinds of jobs
 - Key words: scalable, flexible, automatized
- Need an application layer for limited number of people to control the complicated workflow

Production system

- Based on DIRAC Transformation system (data-driven processing system)
- Consist of several subsystems

Prototype implementation

- Still we are in the beginning of the development
- To evaluate our concept we have prepared initial test bench
- Dedicated for event fabrication (workload management)

• Features

Production Management

- Registration with CUI (no bookkeeping yet)
- Logging by summarized information

- Automatic validation of production definition

• Run small number of jobs with high priority (scout job)

Automatic job submission

- Can choose each own submission rate based on the production priority
- Automatic resubmission of failed jobs
 - Diagnose and log the errors
 → summarize statistical information
 - Cleanup failed jobs (remnant on SE, catalog, or request)

			Prod	uction m	nonitor	\sum	7
Total Created	Submitted	Waiting	Running	Done	Completed	Failed	Stalled
11010 (+2000)	0 (-270)	3267 (-475)	3408 (+638)	4226 (+2052)	10 (+4)	0 (-23)	0 (-25)
11010 (+2000)	0 (-482)	3678 (+283)	762 (-67)	6537 (+2553)	10 (+7)	2 (+1)	2 (-18)
12010 (+2000)	0 (-532)	3361 (-97)	1507 (-189)	7054 (+2800)	18 (+16)	1 (-2)	1 (-4)

Failed jobs are automatically handled

Mivake@hpz800[8]% ./prod ana	lvser sit	e.pv 556							
Transformation	on TransID Si		Pilot/	Apps.	Stall	/Catlg/	/Input/	Outpt	0ther
mc46_test_new1_Touschek_HER	00556	ANY	26	74	207	ø		8	86
		CLOUD.AWS_Singapore.	. 0		92	0		0	
		CLOUD.AWS_Sydney.au	6	43	1356	0		0	10
		CLOUD.AWS_Tokyo.jp	0	0	70	0	0	0	0
		CLOUD.CC1_Krakow.pl	0	67	36	0	0	20	8
		DIRAC.BINP.ru	0	957	5158	0	0	21	94
		DIRAC.Beihang.cn	0	64	0	0	0	0	0
		DIRAC.Nara-WU.jp	0	11		0	0		
		DIRAC.Niigata.jp	0	25		0	0		4
		DIRAC.Osaka-CU.jp	0	13		0	0	0	0
		DIRAC.PNNL.us	0	94	34	0	0	20	19
		DIRAC.Tokyo.jp	0			0	0	0	0
		DIRAC.UVic.ca		1761	4899	0	0	186	230
		DIRAC.Yamagata.jp	0	3	0	0	0	0	0

Production job failure reason per site

Performance

• Typically managing 15-25K jobs (about 150K HS06)

System: tolerable for more jobs

- "Campaign" driven operation
- Should move on continuous production service
- Need further manpower and/or automation

Toward full production system: 1

Management

- Bookkeeping using GUI
- Replica catalog

Fabrication

- Fine grain logging
 - e.g. Keep log files and timestamp of all failed jobs
- Log archiving
 - Keep production logs on SE
- Query input data using AMGA metadata
- Reprocessing of jobs requested by other subsystems (validation, distribution)
- Output merging

Toward full production system: 2

Distribution

- Smart data distribution
- Consider resource status and usage
 - SE capacity and free space
 - Network (PerfSONAR mesh)
 - Area based resource distribution plan

Toward full production system: 3

Monitoring

- System control by monitoring information
 - Currently all of managements (e.g. resource disabling) is performed by expert
 - Move on automatic resource control
- Submit GGUS ticket for trivial failure

Conclusions

- Belle II exploits distributed computing model
- Belle II analysis software framework runs on GRID using job wrapper based on DIRAC API
- The production system is aiming at autonomous operation in both the workload and the data management
- Prototype production system is working for Belle II MC mass production
- Full production system development is undergoing:
 - More realistic workload management
 - Smart data distribution
 - Automatic system controller

based on monitoring information

Hideki MIYAKE, Belle IL production system, CHER20

Belle II sites

Resources spread around the world

Belle II sites

- Resources spread around the world
- Contribution from small sites are NOT small!

Central system

Remote DIRAC slaves (controlled by master server)

Plus some development serves (Krakow, PNNL, KMI)

CVMFS

Some institutes manage own DIRAC slaves for job submission and monitoring - PNNL, KMI, UVic

LFC

Hideki MIYAKE, Belle II production system, CHEP2015