Recent Evolution of the Offline Computing Model of the NOvA Experiment

Talk #200
Craig Group & Alec Habig
CHEP 2015
Okinawa, Japan

Over 200 scientists, students and engineers from 38 institutions and 7 countries.

April, 2015

CHEP 2015

2

NOvA Detectors:

- Fine-grained, low-Z, highly-active tracking calorimeters
- 11 M liters of scintillator
- λ -shifting fiber and APDs

~60 m **Far Detector** (completed Nov. 2014) 14 kton, 896 layers, 344,000 Channels Alternating planes (x view and y view) **Near Detector** (completed Aug. 2014)

NuMI beam from 2013, exposure integrating as detectors were completed

0.3 kton, 206 layers,
C. Group, A. Habig, NOVA Computing,
CHEP 2015 18,000 Channels

NOvA Demand is Large.

- Almost 2 PB of NOvA files already written to tape -- more than 5M individual files.
 - -~5,000 raw data files per day
 - -> 15M CPU hours used over the last year
- Total dataset will be comparable to everything from the Tevatron
- Plan to reprocess all data and generate new simulation ~2 times per year.

(We call this a "production run")

Transition of computing paradigm

- 3 years ago NOvA used a large networked disk (BlueArc) for all file storage and ran jobs locally on cores with direct access to the disk.
 - Not scalable!
- Transition to Sequential data Access via Metadata
 - Forerunner of LHC data management (CDF and D0)
 - Database with metadata catalog (file name, size, events, run info, luminosity, MC details, ...)
 - Dataset creation and queries
 - Coordinates and manages data movement to jobs (gridftp, dccp, future XRootD)
 - Cache management (now using dCache)
 - File consumption and success tracking, recovery
- All NOvA production efforts now use SAM for data handling, reading and writing files directly from tape-backed dCache.
- Capable of running on the Open Science Grid using CVMFS to make code releases available offsite.

Summary of Current Infrastructure

- VM
 - 10 virtual machines for interactive use
- Blue Arc (nfs-based NAS):
 - 335 TB of interactive data storage for short term or small data sets
- Tape:
 - Long term data storage
 - Files registered with SAM
 - Frontend is 4 PB of dCache disk available for IF experiments
 - File Transfer Service (FTS)
- Batch:
 - Local batch cluster: ~40 nodes
 - Grid slots at Fermilab for NOvA: 1300 node quota (opportunistic slots also available)
 - Remote batch queues: thousands of additional slots
- Databases: Several (PostgreSQL), required for online and offline operations
 - Accessed via http for ease of offsite usage

Production Flow

				CUMULATIVE			PER TRIGGER		
	Exposu	re u	teraction	Tape	Disk	Time	Tape	Disk	Time
	(p.o.t.)	(triggers)	er trigge	(TB)	(TB)	kCPU-days	(MB)	(MB)	(CPU-sec)
MC FD beam	2.5e24	8.3E+06	1	31	9	1.0	3.7	1.1	10.4
MC ND beam	1.2e21	2.4E+07	20	82	21	6.2	3.4	0.9	22.3
Data FD beam	-	-	-	-	-	-	-	-	-
Data ND beam	-	-	-	-	-	-	-	-	-
	(seconds)								
MC FD cosmics	2000	4.0E+06	50	50	14	0.4	12.5	3.5	8.6
MC ND cosmics	-			-	-	-	-	-	-
Data FD cosmics	10000	2.0E+07	50	79	26	2.1	4.0	1.3	9.1
Data ND cosmics	-			-	-	-	-	-	-
Totals				242	70	9.7	23.6	6.8	50.4

Production goals:

- The footprint for final output of a production run should be less than 100TB.
- The production run should be possible to complete in a two week period.
- There was a major effort to to understand resources and to streamline production tools in advance of doing big production runs

			CUMULATIVE			PER TRIGGER			
	Exposu	re 11	teraction	Tape	Disk	Time	Tape	Disk	Time
	(p.o.t.)	(triggers)	er trigge	(TB)	(TB)	kCPU-days	(MB)	(MB)	(CPU-sec)
MC FD beam	2.5e24	8.3E+06	1	31	9	1.0	3.7	1.1	10.4
MC ND beam	1.2e21	2.4E+07	20	82	21 (6.2	3.4	0.9	22.3
Data FD beam	-	-	-	-	-		-	-	-
Data ND beam	-	-	-	-	-	-	-	-	-
	(seconds)								
MC FD cosmics	2000	4.0E+06	50	50	14	0.4	12.5	3.5	8.6
MC ND cosmics	-			-	-	-	-	-	-
Data FD cosmics	10000	2.0E+07	50	79	26	2.1	4.0	1.3	9.1
Data ND cosmics	-			-	-	-	-	-	-
Totals				242	70	9.7	23.6	6.8	50.4

Production goals:

MC ND Beam drives CPU usage.

- The footprint for final output of a production run should be less than 100TB.
- The production run should be possible to complete in a two week period.
- There was a major effort to to understand resources and to streamline production tools in advance of doing big production runs

				CU	MULAT	IVE		PER TRIGG	ER
	Exposu	re ii	teraction	Tape	Disk	Time	Tape	Disk	Time
	(p.o.t.)	(triggers)	er trigge	(TB)	(TB)	kCPU-days	(MB)	(MB)	(CPU-sec)
MC FD beam	2.5e24	8.3E+06	1	31	9	1.0	3.7	1.1	10.4
MC ND beam	1.2e21	2.4E+07	20	82	21	6.2	3.4	0.9	22.3
Data FD beam	-	-	-	-	-	-	-	-	-
Data ND beam	-	-	-	-	-	-	-	-	-
	(seconds)								
MC FD cosmics	2000	4.0E+06	50	50	14	0.4	12.5	3.5	8.6
MC ND cosmics	-			-	-	-	-	-	-
Data FD cosmics	10000	2.0E+07	50	79	26	2.1	4.0	1.3	9.1
Data ND cosmics	-			-	-	-	-	-	-
Totals		4 TD /		242	70	9.7	23.6	6.8	50.4
Almost 1 TB/hr! (250 TB = IF+cosmics for full month) Production goals:									l month)

The footprint for final output of a production run should be less than 100TB.

- The production run should be possible to complete in a two week period.
- There was a major effort to to understand resources and to streamline production tools in advance of doing big production runs

				CL	MULAT	IVE	PER TRIGGER		
	Exposu	re i	teraction	Tape	Disk	Time	Tape	Disk	Time
	(p.o.t.)	(triggers)	er trigge	(TB)	(TB)	kCPU-days	(MB)	(MB)	(CPU-sec)
MC FD beam	2.5e24	8.3E+06	1	31	9	1.0	3.7	1.1	10.4
MC ND beam	1.2e21	2.4E+07	20	82	21	6.2	3.4	0.9	22.3
Data FD beam	-	-	-	-	-	-	-	-	-
Data ND beam	-	-	-	-	-	-	-	-	-
	(seconds)								
MC FD cosmics	2000	4.0E+06	50	50	14	0.4	12.5	3.5	8.6
MC ND cosmics	-			-	-	-	-	-	-
Data FD cosmics	10000	2.0E+07	50	79	26	2.1	4.0	1.3	9.1
Data ND cosmics	-			-	-	-	-	-	-
Totals				242	70	9.7	23.6	6.8	50.4

Production goals:

About 1000 CPUs DC!

- The footprint for final output of a production run should be less than 100TB.
- The production run should be possible to complete in a two week period.
- There was a major effort to to understand resources and to streamline production tools in advance of doing big production runs

				CUMULATIVE			PER TRIGGER		
	Exposu	ire ii	teraction	Tape	Disk	Time	Tape	Disk	Time
	(p.o.t.)	(triggers)	er trigge	(TB)	(TB)	kCPU-days	(MB)	(MB)	(CPU-sec)
MC FD beam	2.5e24	8.3E+06	1	31	9	1.0	3.7	1.1	10.4
MC ND beam	1.2e21	2.4E+07	20	82	21	6.2	3.4	0.9	22.3
Data FD beam	-	-	-	-	-	-	-	-	-
Data ND beam	-	-	-	-	-	-	-	-	-
	(seconds)								
MC FD cosmics	2000	4.0E+06				c			8.6
MC ND cosmics	-			• .~	ate	<u>٠</u>	+		_
Data FD cosmics	10000			ctill	10	acel	76		9.1
Data ND cosmics		_ we	ree	عمرا	in	reco			-
Totals	The	ise v	hil	ares	,	<u> </u>		6.8	50.4
• Product	(seconds) 2000 10000 The	se We Were Y Tile Pro	SIIR SIIR	tion	, ru	(13.			
- Th/	Mozc	1-nr	$\mathcal{I}_{\mathcal{U}_{\mathcal{U}}}$			a be less	than 1	LOOTB.	
- T(•	ile h.		pre	te in a	two we	ek peri		

- Product

to understand resources and to There streamline production tools in advance of doing big production runs

CPU (on site)

CPU is has not been a limiting factor.

CPU (off site)

Thousands of offsite CPU slots are also available to us.

CPU (cloud)

Recently received funding for significant Amazon Cloud running for production data sets.

File Throughput

(to obtain dCache location and register in SAM)

- Example file transfer from last week of March (1 of 3 servers)
- Often have sustained throughput >200 GB/hr on each server
- We have three FTS servers
- More than 1TB/hour total has been demonstrated

Two Example Production Runs

- Spring 2014 production: a first in many respects
 - First production run fully based on SAM datasets
 - First effort with a substantial FD data set
 - First effort since code was streamlined and footprint was reduced in the fall 2013 production workshop
 - The SAM transition was far from smooth, we had ups and downs, learned a lot
 - In the end we ran all steps of production in time for Neutrino 2014 (some steps multiple times)
- Winter 2015 production:
 - The data set production effort for first physics results
 - Includes completed detector data
 - Many first-time requests: new keep-up data sets, calibration requests, systematic samples...
 - The SAM paradigm is functioning well.
- Earlier estimates and resource predictions right on the mark

- New tool available to check all data processing steps for every new software release.
- Reports any failure of a file production step.
- Metrics of each step compared between new and past releases:
 - Output file sizes
 - Memory Usage
 - CPU usage
- All info published to the web
- Easy to check for major changes in file production chain.

Production

Configurations

Results

Projections

FA14-09-23 10:13:54 23/09/2014

FA14-09-23 10:13:54 23/09/2014

The projections section interperates any results displayed here.

Test parameters

- Time: 2014-09-23 10:14:28
- Release: FA14-09-23
- Message: Full test of FA14-09-23.

job ended successfully
job ongoing
STDERR not empty
job was killed by batch robots
error in run tier
no pkl file for a completed chain

See M.Tamsett and R.Group's poster #201 "Software framework testing at the Intensity Frontier"

Production

Configurations

Results Projections

FA14-09-23 10:13:54 23/09/2014

FA14-09-23 10:13:54 23/09/2014

The projections section interperates any results displayed here.

See M.Tamsett and R.Group's poster #201 "Software framework testing at the Intensity Frontier"

Production

Testing

Configurations

Results Projections

FA14-09-23 10:13:54 23/09/2014

FA14-09-23 10:13:54 23/09/2014

Summary

- There has been a recent transition to ascalable file handling system similar to what was employed by CDF and D0
- Computing resources are sufficient and we are ready to serve the data sets required by the collaboration for physics
 - CD is working closely with is to solve issues as they arrive
- Now taking advantage of offsite CPU resources (CVMFS works great!)
- Demonstrated production framework, and measured/documented resource requirements
- New production validation framework is very useful
- Now producing a full set of production files for analysis groups and first physics

Other relevant parallel talks and posters on NOvA computing...

- "Software framework testing at the Intensity Frontier"
 - M.Tamsett & R.Group, poster #201
- "Large Scale Monte Carlo Simulation of neutrino interactions using the Open Science Grid and Commercial Clouds"
 - A.Norman, poster #465
- "Data Handling with SAM and ART at the NOvA Experiment"
 - A.Aurisano, poster #214
- "The NOvA Simulation Chain"
 - A.Aurisano, talk #213
- "Software Management for the NOvA Experiment"
 - G.Davies, R.Group, poster #293
- "A Data Summary File Structure and Analysis Tools for Neutrino Oscillation Analysis at the NOvA Experiment"
 - D.Rocco & C.Backhouse, poster #453

Extra slides follow...

Recent tape usage

dCache usage by experiment

dCache

What drives resource requirements?

- CPU ND Beam simulation
- Disk:
 - FD Raw data large calibration sample required
 - Many stages of processing each produce data copies (important for intermediate validation steps)

Production: CPU Requirements

CPU Requirements: ND Event MC dominates ~60% of production

- Driven by generation speed: Order 10 seconds per event
- Driven by quantity of events (MC to data ratio)
 - ND crucial for: tuning simulation, evaluating efficiencies, estimating background rates, and controlling systematics.
 - Minimal ND data set for first NOvA analyses in is 1e20 protons-ontarget (2 Months of ND data)
 - MC samples need to be a few times larger than this to keep their statistical uncertainties from playing a significant role
 - Additionally, both nominal and systematically varied samples are needed.
 - So, our estimate is based on 1.2e21 p.o.t.
- 2014/2015 estimates based on 3 production runs:
 - 1 M CPU hours (.35 M per production run)
 - This manageable with our current grid quota and offsite resources.

(Note: This only includes production efforts (no analysis, calibration, ...)

FD Data rate

As an upper limit consider the current date transfer limit from Ash River to Fermilab of 60 MB/s.

- This is about 10% of FD data.
- 5 TB / day (seems possible data rate to transfer to tape)
- 1.8 PB/year (Full set of Tevatron datasets ~ 20 PB)
- Only Raw data gain about 4x from full production steps
- Could be 10 PB/year, but we won't process all of that.
- Assuming 100 us for beam spill, <0.07 MB/s
- Cosmic Pulsar, < 4 MB/s (currently ~2% of live time)
- Calibration and other triggers (DDT) fill in ~ 50 MB/s.
- UPPER LIMIT: online triggering used to save much less data
 GOAL: Tape storage should not limit the physics potential of the experiment!