

The ATLAS Software Installation System v2

Alessandro De Salvo

Mayuko Kataoka, Arturo Sanchez Pineda, Yuri Smirnov

CHEP 2015

Overview Architecture Performance

LJSFi Overview

LJSFi is an acronym of Light Job Submission Framework

- Developed in ATLAS since 2003 as a job submission framework for the validation of software releases and other software installation related tasks
- Evolved with time to cope with the increased load, the use of the WMS and Panda and for HA
- Using a plugin architecture, in order to be able to plug any other backend in the future

Multi-VO enabled

LJSFi can handle multiple VOs, even in the same set of servers

Web User Interface

- The LJSFi main interface is web-based
- Users can interact with the system in different ways, depending on their role
- Anonymous users have limited access, while registered users, identified by their personal certificate, have more deep access

Fast job turnaround, Scalability and High-Availability

- LJSFi is able to cope with hundreds of resources and thousands of releases, with turnaround of the order of minutes in the submission phase
- Horizontal scalability is granted by adding classes of components to the system
- HA is granted by the DB infrastructure and the embedded facilities of the LJSFi components

LJSFi Components

- The main components of the LJSFi infrastructure are
 - The LJSFi Server
 - The Request Agents
 - The Installation agents
- The LJSFi Server is built out of different sub-systems
 - The HA Installation DB
 - The InfoSys
 - The Web Interface
 - The monitoring facilities
 - The APIs
- The Request Agents and Installation Agents are connected to the close Servers
 - To request and process the tasks
 - To cleanup and notify the admins
- In this configuration the failure of a component is not fatal
 - Just the logfiles hosted on a failed server won't be accessible

The LJSFi v2 architecture

LJSFi HA Database

Based on Percona XtraDB cluster

- Extension of the MySQL engine, with WSREP (Write-Set Replication) patches
- True multi-master, WAN-enabled engine

A cluster of 9 DB machines in Roma + 2 at CERN

- The suggested minimum is 3 to have the quorum, and we wanted to be on the safe side!
- More machines may be added, even in other sites, for better redundancy
- No powerful machine is needed, but at least 4GB of RAM, 100GB of HD and standard network connectivity (but lower latencies are better)
- VMs are used at CERN, where we run on the Agile Infrastructure, and no performance issue was seen so far, including the WAN latency

Hosting the main DBs used by LJSFi

- The Installation DB: the source of release definition for CVMFS and full driver for the ATLAS installations
- The InfoSys DB: the database used for resource discovery and matchmaking

LJSFi InfoSys

- Used for resource discovery and matchmaking
 - Connected to AGIS (ATLAS Grid Information System) and PanDA
- Mirroring the needed AGIS data once every 2 hours (tunable)
- Data freshness checks
 - No interaction is possible with the InfoSys if the data age is > 4h (tunable)
- May use more parameters in the matchmaking than the ones currently present in AGIS
 - e.g. OS type/release/version (filled by the installation agents via callback)
 - These parameters can be sent to AGIS if needed, as we do for the CVMFS attributes
- Sites can be disabled from the internal matchmaking if needed
 - For example HPC and opportunitic resources (BOINC), where we should not run automatically the validations as soon as we discover them

LJSFi APIs

- LJSFi provides two ways to interact with the servers
 - The python APIs
 - The REST APIs
- The python APIs are used by the LJSFi CLI
 - For the end-users
 - Used by the Installation Agents and Request Agents too
- The REST APIs are used for a more broad spectrum of activities
 - Callbacks from running jobs
 - External monitoring
 - CLI commands / Installation Agents
 - Internal Server activities

LJSFi Request Agents

- The LJSFi Request Agents and responsible of discovering new software releases and insert validation requests into the DB
 - Using the infosys and the matchmaker to discover resources not currently offline
 - Handling the pre-requirements of the tasks, like
 - installation pre-requisites
 - OS type, architecture
 - maximum number of allowed concurrent jobs in the resources (Multicore resources)
 - ...
- The Request Agents periodically run on all the releases set in auto deployment mode
 - Currently the loop is set every 2 hours, but will be shortened as soon as we will bring the request agents to multi-threaded mode

LJSFi Installation Agents [1]

Used to follow the whole job lifecycle

- Processing Task Requests from the database
 - Collisions control among multiple agents is performed by central locks on tasks
- Pre-tagging site as having the given software before sending the jobs
 - Only happening if the sites are using CVMFS
 - Almost all the sites are CVMFS-enabled, with a few exceptions like the HPC resources
- Job submission
- Job status check and output retrieval
- Tag handling (AGIS based)
 - Tags are removed in case of failure of the validation jobs or added/checked in case of success

The installation agents are fully multi-threaded

- Able to send several jobs in parallel and follow the other operations
- In case of problems, timeouts of the operations are provided either from the embedded commands used or by the generic timeout facility in the agents themselves

LJSFi Installation Agents [2]

- Several installation agents can run in the same site or in different sites
 - Each agent is linked to an LJSFi server, but when using an HA alias it can be delocalized
 - Each server redirect the DB calls via haproxy to the close DB machines
 - Taking advantage of the WAN Multi-Master HA properties of the DB cluster
- Serving all the ATLAS grids (LCG/EGI, NorduGrid, OSG), the Cloud resources, the HPCs and opportunistic facilities via Panda
- The logfiles of every job is kept for about a month in the system, for debugging purposes
 - Logfiles are sent by the agent to their connected servers
 - Each server knows where the logfiles are and can redirects every local logfile request to the appropriate one

LJSFi Web Interface

- The LJSFi Web interface has been designed for simplicity and clearness
 - https://atlas-install.roma1.infn.it/atlas_install
 - Most of the Input boxes are using hints rather than combo boxes
 - Links to AGIS and Panda for the output resources
 - Friendly page navigation (HTML5)
 - Online Help
- Each server have a separate Web Interface, but the interaction with the system are consistent, whatever server you are using

Performance

- The system can scale up to more than several thousands jobs per day
 - The horizontal scaling is granted by adding more agents in parallel and increasing the Database cluster nodes
 - To improve performance a limit on the number of jobs handled by the currently running agents has been set to 4000
 - The system processes new requests before the others, to allow a fast turnaround of urgent tasks

Installation activities

cancelled

- Generally only a few minutes are needed between the task requests and the actual job submission by the agents
- The system is able to handle a large number of releases and sites
 - We currently have > 500 different resources and > 1600 software releases or patches handled by the system

failed

installed

Conclusions

- LJSFi is in use by ATLAS since 2003
 - Evolved in time from the WMS to Panda
- Open System, multi-VO enabled
 - The infrastructure can be optimized to be used by several VOs, even hosted on the same server
- Currently handling well all the validation jobs in all the Grid/Cloud/HPC sites of ATLAS (> 500 resources and > 1600 software releases)
 - LCG/EGI
 - NorduGrid
 - OSG
 - Cloud sites / HPC sites / Opportunistic resources (Boinc)
- Fully featured system, able to cope with a big load, scalable and high-available
 - No single point of failure