
NoSQL technologies for the
CMS Conditions Database

Roland Sipos (CERN) for the CMS Collaboration

CHEP, 14.04.2015

Overview
● Intro

○ NoSQL
○ Conditions Database and motivations

● Candidates
○ Options and choices

● Prototypes
○ Deployment aspects
○ Empirical evaluation and results

● Outro
○ Application layer and integration
○ Outlook

2

Intro - CondDB and NoSQL
3

NoSQL - General
NoSQL in keywords.
● Only a buzzword

○ Meaning: “One size does not fit all!”
● CAP Theorem
● ACID vs BASE
● Different models

○ Doc. store, Key-Value, Column oriented, BigTable

NoSQL means: “we have options”!
Not against relational DBs,
but a complement to those!

4

Conditions Database
Alignment and Calibration constants, that records a given
“state” of the CMS Detector.

Essential for the analysis and reconstruction of the
recorded data.

Also critical for the dataflow and need to be properly re-
synchronized during the data processing.

Poster: The CMS Condition Database system
(Contr.ID: 130)

5

CondDB - Details
Conditions are free from:
● Full table scans

○ Only “by key” access
● Joins
● Complex, nested queries
● Transactions

○ Data is written once, and never deleted, altered
● Absolute consistency

○ Only consistency criteria: newly appended data
should be available for reads ASAP!
(in less than few seconds)

6

CondDB - Motivations
Find alternative data storing technologies for the
CMS Conditions data for:
● Storing BLOBs
● And it’s meta data
● In a read-heavy environment
Further requirements:
● Durability
● High availability
● (Optional scalability)

Do we really need relational access for such use-case?
7

NoSQL - Options

Options

Non-Relational Relational

Operational

Analytic

NewSQLNoSQL

Document

Key-value DaaS

Column
oriented Graph

 Oracle IBM DB2 JustOneDB
 MS SQL Server

 Hadoop
Cloudera Hadapt

 Oracle TimesTen IBM Infosphere
SAP (Hana, Sybase IQ) HP Vertica

SPARK

Lotus Notes

 CouchDB
 MongoDB

 MySQL PostgreSQL JustOneDB

 Progress
Objectivity
 Versant

McObject
MarkLogic

SQL Azure RavenDB
 Amazon RDS

 Xeround
FathomDB NuoDB

 Riak
 Redis
 Voldemort
 BerkleyDB

Cassandra
 Accumulo

 BigTable
 HyperTable
 HBase

 Neo4j

Couchbase SimpleDB
App Engine

Brand new RDBS Add-on

 Clustrix
 VoltDB
 SnakeSQL

 ScaleDB
MySQL Cluster
 GenieDB
 TokutekDrizzle

Flat, Hierarchical,
Network, etc...

source: Tim Gasper - Big Data Right Now: Five trendy open source technologies

8

NoSQL - Candidates
How to chose?

Empirical evaluation: Check if a given prototype meets the
usability and performance criterias from the original solution.

If more of them passes the criteria, choose the best, based
on essential features and performance characteristics.

9

Prototypes - The candidates
10

Selection
In multiple phases...

Find:
● Showstopper problems (no-go)
● Barely usable (some issues)
● Promising candidates

Preliminary testing.
11

Candidates
No-go

● HBase (/w HDFS)
○ BLOB size problem.

● CouchDB
○ Drivers

● Hypertable
○ In development

● etc.: app layer needs,
CAP characteristics,
durability problems.

Promising
● MongoDB

● Cassandra

So-so
● RIAK

○ Query routing!
● (Couchbase)

12

CustomSamplers
An extension for JMeter, with CMS specific needs, in order
to measure the performance of the different databases.
For each candidate the extension has:
● Deployers

○ To build up the data model
● QueryHandlers

○ Simulate the CMS workflow
● ConfigElements

○ Configure persistency objects
● Samplers

○ Report to the testplan listeners
13

Deployment
Automated virtual environments on OpenStack.

○ Personal tenant - biased by user interactions
○ Thanks to the collaboration with CERN IT, the

evaluation was made on dedicated resources
○ Also SSD cached vs. disk comparisons were made

Details:
○ No overcommit
○ Instances are “equally” distributed on the

hypervisors. (for 5 node: 2-2-1 on 3 hypervisors)
○ 1 GBit NICs (shared between co-hosted VMs)

14

Results
Increasing request numbers: 1-9 TPS
(For both remote and single testplans)
● Exploring limits for saturating factors like:

○ Network bandwidth
○ Access of persistency objects
○ Storage elements (Ephemeral disk/SSD, Ceph)

● Scaling out (different cluster setups):
○ Node numbers (5 x m1.large, 4 x m1.medium)
○ Routing techniques (Round robin, Token-aware)
○ Distributed testing (4 JMeter engine)

15

Plots
Loadosophia - Roland.Sipos@cern.ch
Composite timeline analysis (request time vs. monitoring)

16

mailto:Roland.Sipos@cern.ch

Remarks
● MongoDB - 10Gen

○ Scaling
○ BLOBs
○ API (however… mongos.)

● Cassandra - Datastax
○ Scaling
○ BLOBs (splitting of large binaries?)
○ API

● RIAK - Basho
○ Scaling
○ BLOBs
○ API (token aware routing? C++ driver?)

17

Outro - Present and future
18

Application layer
The current implementation of the session layer
is extendable with alternative storage backends.
Steps:
● Handling persistency objects

○ Extending the software framework with NoSQL
support

● Implement the Session interfaces
○ Implementing the “equivalent” CondDB queries

● Testing
19

Integration
● Release validation
● Find differences between the current

solution and the prototypes
○ Using real data
○ Real use-cases - using CMSSW

This will be the final performance comparison
between different deployments.

20

Outlook
● Understand and eliminate issues during the

release validation
● Fine-tuning critical performance factors
● Formal evaluation and comparison of the

different solutions

Long term project!
Not a “by tomorrow” change, but for LS2.

21

The end
Thank you for
your attention!

Any questions
are welcome!

From: http://geek-and-poke.com/
22

