
PROOF Analysis Framework
J. Delgado Fernández1,E. Fernández Castillo2,I. González Caballero1,A.Y. Rodríguez Marrero2

1U. de Oviedo – Spain, 2Inst. de Física de Cantabria (UC-CSIC) – Spain

Introduction

WorkflowDesign

Features

Performance Conclusions

The PROOF Analysis Framework (PAF) is a PROOF based tool for the last phases of a typical HEP analysis when the data is usually stored in the format of ROOT flat (or
close to flat) trees. PAF is designed to make the use of possible distributed computing resources easy. Therefore, the same PAF based analysis code can be run on a
single node, a cluster or a cloud thanks to the transparent integration of tools like PROOF Lite, PROOF on Demand (PoD), PROOF Cluster or PROOF Cloud. In the latest
release we have added a higher level of modularity to further enhance the ability of analysis developers to collaborate. We have also re-implemented most of the code
to improve PAF performance in view of the higher needs of LHC Run-II.

PAF common code can be downloaded, installed and configured for personal
use or in a central location through a well-defined documented procedure. Its
modular design provides high adaptability to new requisites that may
arise in the future. We have developed a clean and pure object oriented
framework that can adapt to several different workflows and user
preferences.
The code has been structured in four modules: computing, environments,
utilities and settings.
• Computing: Core computing code, base project and analysis classes.
• Environments: Integration of PoD, PROOF Cluster, ...
• Utilities: Additional PAF tools to improve the user experience.
• Settings: PAF requires some parameters to be configured to be able to run.

Some of these settings are the path to the PAF binaries and libraries, the path
to additional package repositories or the behavior of the logger. These
settings are encapsulated in a strategy pattern which although, by default,
takes these values from environment variables, it can be easily extended with
additional mechanisms.

Our testbed is made of HP DL360p Gen8 servers with 2
Xeon E52650 (2.00GHz) connected to a HUS 110 storage
server. A typical CMS diboson (WZ) cross section estimation
analysis code was run over a 23 GB Z+Jets sample.
We show on the left the improvement obtained by the
lazy download functionality as well as the speed up
measured with PROOF Lite and PoD environments. The
scalability of the processing time shows a reasonable trend
for a small number of slaves, while it fails at higher values
due to the limits of the hardware configuration.
The initialization time grows linearly with the number of
nodes. PROOF Lite is 5-10 times faster in this phase since
everything happens locally. Setting PoD can take up to 10
seconds but PoD dynamic clusters can be reused.
The time spent in code preparation, compilation and
loading shows no correlation with the number of nodes
and amounts to about 10 seconds.

A large number of functionalities have been implemented in PAF while trying to keep the configuration task as simple
and automatic as possible. It has been developed with the idea of getting the best performance with an easy way to
interact with it.
• Modular analysis framework: In our latest release, we have introduced the concept of a project made of several
analyzers providing easy communication abilities to all of the elements. This way specialized analyzers (ex: Electron
selector, MET estimator,...) can be easily shared among different analysis developers.

• Processing environments: Including sequential processing, PROOF Lite and other dynamic PROOF cluster builders
(PoD, PROOF Cluster, PROOF Cloud). To change from one to another just a single line needs to be edited. New
environments can be easily added.

• Transparent lazy loading of branches: A smart dynamic mechanism allows PAF to instruct ROOT to only load those
branches used in the analysis resulting in processing rates up to 10 times faster depending on the complexity of the
analysis.

• Support for local or distributed package compilation: Through a single switch PAF can be instructed to compile
analysis packages locally (ideal for homogenous environments) or in the slaves (needed in the case of heterogeneous
clusters).

• Logger: We have developed an extensible logger to improve PAF runtime information.
• Dynamic histograms: One or several histograms produced in the analysis can be selected to be plot during the data

processing.

• PAF has been successfully used in the analysis of the LHC
Run-I data taken by the CMS detector.

• The new implementation enhances the previous version
providing better scalability, flexibility and performance.

• The modularization capabilities allow for better sharing of
analysis algorithms.

• Further improvements will aim at additional reduction of
the initialization and compilation time, support for other
tree formats and better handling of new workflows.

• Support for ROOT 6 will also be provided in the short term.
• More information can be found in:

http://www.hep.uniovi.es/PAF

In the chart below a schematic representation of a normal analysis development
cycle with PAF is shown. PAF installation and configuration should be done once
and may be reused as many times as needed. The actual physics analysis code is
encapsulated into at least one selector or analyzer that can be enriched with
more packages and modules. All this is added to a project in a ROOT macro that
once executed sets up the selected environment, transparently prepares and
compiles all the code, loads it into the slaves, and starts the distributed
processing.

• Homogenous and efficient variable passing: A simple mechanism has been implemented to pass information from the main process to the analyzers, and between
analyzers.

• Tree inspector: An independent tool to easily inspect and find out the content (branches) in a ROOT file The tool provides cut and copy code very useful in the
development of a new analysis class.

http://www.hep.uniovi.es/PAF

