
CosmoSIS: 
Modular cosmological parameter estimation

Alessandro Manzotti  
Sarah Bridle, Scott Dodelson, Elise Jennings, 

Jim Kowalkowski, Marc Paterno, 
Doug Rudd, Saba Sehrish, Joe Zuntz

CHEP 2015

https://bitbucket.org/joezuntz/cosmosis/wiki/Home

https://bitbucket.org/joezuntz/cosmosis/wiki/Home

Cosmology in the Era of Big Data

BIG$DATASET

BIG$COLLABORATION

15,000$galaxies$ >1Million

SOFTWARE
Codes$developed$individually,$

in$different$languages.$$

The$output$is$shared.

Past PresentKfuture

HEP collaborations have strong
control over their process!

• much important code developed by very small
groups!

• each individual or group chooses
programming language, tools, etc. (Python,
Fortran, C are most common)!

• no central management of software is
possible!

• collaboration is often informal

• define choice of programming language
(almost all C++)!

• single framework used for most
development!

• centrally managed software!
• requires strong control over member of the

collaboration

Cosmologists work on their own
much more often!

CosmoSIS has to live within the demands !
of the cosmology community

Collaborative development differences

CosmoSIS:!
!

Modular framework for
parameter estimation.!

!
Example: turn

supernovae brightness
into constraints on

cosmological model
parameters.

Consolidate and connect together existing codes

Enhance collaboration, and development of new
algorithm in different languages!

Make it easy to deploy, configure, and run across
all supported platforms

Fast and able to run on HPC cluster

Next generation parameters estimation

See:!
Physics Analysis Software Framework for Belle II
M. STARIC et al.

CosmoSIS:!
!

Modular framework for
parameter estimation.!

!
Example: turn

supernovae brightness
into constraints on

cosmological model
parameters.

Consolidate and connect together existing codes

Enhance collaboration, and development of new
algorithm in different languages!

Make it easy to deploy, configure, and run across
all supported platforms

Fast and able to run on HPC cluster

Nothing about the framework is cosmology - specific

Next generation parameters estimation

See:!
Physics Analysis Software Framework for Belle II
M. STARIC et al.

COSMOSIS

APIs:!
!

Development
environment:!

!

Distribution
system:!

!

Runtime
environment:!

Our modular solution: Cosmosis

To make it easy to install the
code and ensure

compatibility.

To write, build, and test
analysis software, and which
makes it easy to share what

they have developed.!
!

 Registration of attribution
information (required

citations, etc.) for use of any
contributed code.

To reliably configure and run
programs that use these

modules.!

Define module configuration,!
how to obtain their input

data, how they interact with
the framework, how outputs
are organized, and now new
modular components can be

added.!

CosmoSIS!
Framework

Standard library

Flow of data
Control relationship

SAMPLER

CosmoSIS!
main

We provide commonly used
sampler and modules but it is
oriented to users contribution!

Physics
module A

Physics
module B

Physics
module C

P$

a$

r$

a$

m$

t$

e$

r$

s

Observables

Likelihood of model given data

Modularity is the key

 Standard
Library!

CAMB, Planck,WMAP,
BICEP2, CFHTLens,

BOSS

Dark
Energy Survey

specific
modules

Collaboration
modules

Other
user’s

physics

!

CosmoSIS:!
!

• Core libraries!
• Infrastructure for modules !
• Samplers!

!
!
!

Software tools:!
e.g. gcc, g++,

gfortran,Python,
SciPy, fftw, gsl,
NumPy, cfitsio,

Publicly available
CosmoSIS
Private or collaboration
libraries

External contributions are welcomed.
We are happy to include them after
internal review.

R!
e!
v!
i!
e!
w

Dependencies

CosmoSIS structure

DataBlock passed to each module
(similar to a HEP event) Modules

Note: the result from event n
(the likelihood) influences what
happens in event n+1 !
(MCMC process)

Output

Modularity at work

"Matter"content"of"universe

Cl
us
te
ri
ng
"

also B.A.T talk by F. BEAUJEAN

• Looking"for"a"small"Gaussian"signal"on"top"of"a"falling"exponential"background."We"use"a"binned"
likelihood,"Poisson"statistics,"and"we"integrate"the"cross"section"dependency"across"each"mass"bin

HEP example : bump hunt 1

0 100 200 300 400 500 600 700

Energy (GeV)

0

500

1000

1500

2000

2500

3000

N
�

E
ve

nt
s

Bump Hunt toy model. !
Exponential background + signal.

CosmoSIS!
Results

INPUT:
 mu (mass of resonance): 232.2 (units of GeV)
 sd (width of resonance): 7.4 (units of GeV)

�
background

= 800 �
signal

Simulated data

2"""""confidence�

also B.A.T talk by F. BEAUJEAN

• CosmoSIS parallelism with OpenMP and MPI!
– develop a program on your laptop!
– without change, run using thousands of cores on an HPC cluster!

• Tools for diagnosis of convergence, thinning, etc.!
– Gelman-Rubin statistic,auto-correlation length test!
– Continue sampling from a previous chain!

• Tools for analysis of posterior densities!
– single parameters and two-parameter posterior density plots!
– Basic statistic of the chains and covariances!

• Integration with diverge community supported codes

cosmosis: A complete toolkit

HEP example : bump hunt 2

def execute(block, cfg):!
 # Read this sample's parameters from the block!
 lum = block[params, "lum"]!
 xsecbg = block[params, "xsecbg"]!
 beta = block[params, "beta"]!
 xsecsig = block[params, "xsecsig"]!
 mu = block[params, "mu"]!
 sd = block[params, "sd"]!
!
 # Calculate the expected counts in each bin corresponding to this!
 # sample's parameters!
 lows = cfg.lowedges!
 highs = cfg.lowedges + cfg.binwidth!
 f1 = np.exp(-1.0 * lows / beta)!
 f2 = np.exp(-1.0 * highs / beta)!
 expected_bkg = lum * xsecbg * (f1 - f2)!
!
 sqrt2sigma = np.sqrt(2.0)*sd!
 g1 = special.erf((mu-lows)/sqrt2sigma)!
 g2 = special.erf((mu-highs)/sqrt2sigma)!
 expected_signal = lum * xsecsig * (g1 - g2) / 2.0!
!
 expected_counts = expected_signal + expected_bkg!
!
 # Now cacluate the log-likelihood for our data, given the!
 # expectation for this sample!
 loglike = np.sum(-expected_counts + cfg.counts *
np.log(expected_counts) - cfg.lnfactcounts)!
!
 block[likes, "BUMP_HUNT_LIKE"] = loglike!
 return 0!

name: "BumpHunt"!
version: "2015"!
purpose: "Toy bump hunt example for HEP demonstration"!
attribution: [Marc Paterno]!
rules: "None."!
cite: !
 - "A. Manzotti et al., 'CosmoSIS: a System for MC Parameter Estimation', CHEP
2015"!
!
assumptions:!
 - "Toy data set with Gaussian bump on exponential background"!
!
explanation: >!
 "This is a toy demonstration of using CosmoSIS for a non-cosmology problem.!
!
 We perform a fit to the binned data.!
 "!
!
List of parameters that can go in the params.ini file in the section for this
module !
params:!
 datafile: "text, the name of the data file we're using the the fit"!
 lowedge: "float, the low edge of the mass histogram"!
 nbins: "int, the number of bins in the histogram"!
 binsize: "float, the width of bins in the histogram" !
!
#Inputs for a given choice of a parameter, from the values.ini!
inputs:!
 cosmological_parameters:!
 lum: "the integrated luminosity for the data set"!
 xsecbg: "the cross section for the background process"!
 beta: "the exponential background falloff parameter (units of mass)"!
 xsecsig: "the cross section for the signal process"!
 mu: "the mass of the bump"!
 sd: "the width of the bump"!
!
outputs:!
 likelihoods:!
 BUMP_HUNT_LIKE: "Likelihood for the observed data, given the parameters."!

Simple Well Documented

Cosmologists are learning. We see the value and feasibility of well-
controlled software, with strong control over versioning and binary
compatibility.

Contribution and sharing increases. Open-source model for contribution of
modules (with attribution for work) has helped attract interest in sharing code.

HEP might consider adopting a similar attribution concept to help encourage
sharing (and rewarding the developers of) useful software. Multi-language
systems lower the bar on programming expertise for contribution.

Some lessons learned (or re-learned)

https://bitbucket.org/joezuntz/cosmosis/wiki/Home

https://bitbucket.org/joezuntz/cosmosis/wiki/Home

KEEP
CALM

and

BE
MODULAR

https://bitbucket.org/joezuntz/cosmosis/wiki/Home

https://bitbucket.org/joezuntz/cosmosis/wiki/Home

Additional"temp"Slides.

