

Continuous Readout Simulation with FairRoot for the PANDA Experiment

14. April 2015

Tobias Stockmanns on behalf of the PANDA Collaboration and the FairRoot Team

21st International Conference on Computing in High Energy and Nuclear Physics CHEP2015 Okinawa Japan: April 13 - 17, 2015

Motivation – PANDA Experiment

- Antiproton beam at proton target < 15 GeV/c
- Signal and background-events very similar → no hardware trigger possible
- Quasi continuous beam with maximum interaction rate of 20 MHz → Poisson distribution
- Raw data rate of 200 GByte/s
- Reduction of 1000 needed for permanent storage O(PByte/year) → Online Event Filter
- Simulation of event overlap needed in FairRoot-Framework (ALFA)

F. Uhlig 14/4/15 15:15 M. Al-Turany 14/4/15 15:30

Event Structure and Detector Response

- 3 Stage approach:
 - Each event gets an event time generated after the simulation stage
 - In the digitization stage a buffer is introduced which keeps the data beyond an event boundary
 - In the reconstruction stage data is not retrieved eventby-event but based on time information

Event Mixing and Time Association

- MC file does not know anything about time structure
- Time structure is calculated at the beginning of digitization
- Many different signal files can be added to one background file

FairWriteoutBuffer

- Special buffer to store detector digis between events
- Stores data as long as it can influence later events (*Active Time*)
- Modifies the data if a detector element is hit a second time (*pile-up*)
- If time of new event is after Active
 Time the data is written to file
- Result is a randomized data stream for further processing
- Mimics realistic detector response

Digi Data Randomized

Digi Data Randomized

Sorting Data - FairRingSorter

If a storage position is calculated which would override old data, the old data is saved to disk and the storage cell is freed

Digi Data Sorted

Digi Data Sorted

Reading Back Data

• Two different methods exists

- GetData with one functor/parameter runs always forward in time
 - Data is only read once
- GetData with two sets of functor/parameter is able to get data within a time window
 - Data can be extracted many times

Reading Back Data

- Different algorithms available to extract data:
 - All data up to a given time
 - All data in a time window
 - All data between timegaps of a certain size
- Other algorithms can be (easily) implemented

EXAMPLES

14. April 2015

Folie 14

Examples

14. April 2015

Tobias Stockmanns

Summary

- Time-based simulation part of FairRoot-Framework
- Possible to simulate:
 - Event mixing depending on sub-detector features •
 - Pile-up
- Data sorting by time stamps
- Reconstruction based on:
 - Time slices
 - Overlapping time intervals
 - Gaps in the data stream

Various examples shown

BACKUP

14. April 2015

Folie 17

Time-based simulation of PANDA DIRC

Probability of hitting the same detector element within 50 ns (time spread of photons from the event):

- ~4 % for background
- ~1.5% for uniform distribuiton
- 90 % of theses events still could be separated using delta timing

Data Packaging

- Select data packages according to time gaps between digi clusters
- Works very well for detectors with precise time measurement

MC Truth Packages 102 10 400 time [ns] R. Karabowicz d a

Example: GEM Digis

MVD - Number of Merged Events

GEM Tracking Efficiency

87% for primaries with |p|>1GeV/c, compared to ~95% in event-based reconstruction

R. Karabowicz

Simulation Flow

