

The Effect of NUMA Tunings on CPU Performance

Christopher Hollowell <hollowec@bnl.gov>
RHIC/ATLAS Computing Facility
Brookhaven National Laboratory

Co-authors: Costin Caramarcu, William Strecker-Kellogg, Tony Wong,
Alexandr Zaytsev

mailto:hollowec@bnl.gov

What is NUMA?

NUMA - Non-Uniform Memory Access

Memory architecture for multiprocessing computer systems
where processors are directly attached to their own local RAM

Fast access to local memory

CPUs can access each other's (remote) memory, but
there is an associated performance penalty

Such requests are slower because they must flow through
the remote memory's controlling CPU

AMD introduced NUMA support for x86 with the
HyperTransport bus for Opteron in 2003

Intel followed with NUMA support in Nehaelm via the
QuickPath Interconnect (QPI) bus in 2007

2

Typical NUMA Architecture

core0

core1

core2

core3

CPU0

core0

core1

core2

core3

CPU1

CPU Interconnect (i.e. HyperTransport/QPI)

RAM RAM

Memory Controller Memory Controller

NUMA Topology – The layout of CPUs, memory and NUMA nodes in
a system

NUMA Node – a grouping of CPU(s) and associated local memory

NUMA Node0 NUMA Node1

3

How Can NUMA Improve Performance?

In uniform memory access (UMA) SMP systems, generally
only one processor can access memory at a time

CPUs block the memory bus when accessing RAM
This can lead to significant performance degradation

The problem gets worse as the number of CPUs in a
system increases

NUMA's advantage – each CPU has it's own local RAM that it
can effectively access independently of other CPUs in the system

Requires a NUMA-aware operating system to optimize locality
for potential performance improvements

OS should preferentially:
1. Attempt to allocate most/all of a task's memory to one
CPU's local RAM
2. Attempt to schedule a task to the CPU directly connected
to the majority of that task's memory

4

Linux NUMA Support

Basic support with NUMA aware scheduler first appeared in kernel 2.5

numactl
Display system NUMA topology
Allows for the execution of a process with specific NUMA affinity
tunings
numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29
node 0 size: 40920 MB
node 0 free: 23806 MB
node 1 cpus: 10 11 12 13 14 15 16 17 18 19 30 31 32 33 34 35 36 37 38 39
node 1 size: 40960 MB
node 1 free: 24477 MB
node distances:
node 0 1

 0: 10 20
 1: 20 10

Force execution on node0 with memory allocation forced on node0 (out of memory condition when
all node0 memory exhausted):
numactl --cpunodebind=0 --membind=0 COMMAND

Force execution on node1 with memory allocation on node1 preferred:
numactl --cpunodebind=1 --preferred=1 COMMAND

5

Linux NUMA Support (Cont.)

Numad
Daemon which monitors NUMA topology and resource utilization,
automatically making process affinity adjustments to optimize
locality based on dynamically changing system conditions

Utilizes cgroups to set CPU/memory affinity, and to migrate
memory between nodes. Adjustable scanning intervals (-i 15 default)

Added in Red Hat Enterprise (RHEL) and Scientific Linux (SL) 6.3

Early versions recommended changing khugepaged sysfs
“scan_sleep_millisecs” setting to 100ms on systems with
transparent huge (2M) pages enabled (default in RHEL/SL6)

Use of huge pages increases TLB cache hits, and therefore
general performance
Default scan_sleep_millisecs parameter set to 10000ms
Change increases defragmentation of memory
Newer versions of numad automatically set
scan_sleep_millisecs to 1000ms, changeable with -H parameter

6

Benchmarking NUMA Tunings

All tests run under Scientific Linux (SL) 6
This is the OS currently in use on our compute nodes at RACF

Benchmarks run multiple times on each system, with averages
reported

HEPSPEC06 (HS06)
Standard HEP-wide CPU performance benchmark

Developed by the HEPiX Benchmarking Working Group

Subset of SPEC CPU2006 benchmark

Measures performance of a fully utilized system (all cores),
simulating a host fully loaded with processing jobs

http://w3.hepix.org/benchmarks/doku.php/

7

http://w3.hepix.org/benchmarks/doku.php/

Benchmarking NUMA Tunings (Cont.)

 ATLAS Software Benchmarks
Software from ATLAS KitValidation executed, and timed

Event Generation
Geant4 Simulation
Digitization
Reconstruction

Currently based on an older ATLAS software release (16.6.5)
for 32-bit SL5

Software copied to local storage, out of CVMFS to reduce
possible effects of CVMFS server and network load on
performance. All I/O performed on local drives

Run in parallel to exercise all logical cores

Thanks to Shuwei Ye <yesw@bnl.gov> for developing this
benchmark

8

mailto:yesw@bnl.gov

Hardware Benchmarked

 All tests run on dual processor Intel Xeon-based systems
Would like to benchmark recent AMD Opteron based hosts,
and quad-CPU systems: unfortunately, we do not currently have
such hardware at our facility

1. Penguin Computing Relion 1800i
Dual Intel Xeon E5-2660v2 (Ivy Bridge) CPUs @2.20GHz

40 logical cores total (HT on)
10 x 8 GB DDR3 1600 MHz DIMMs

80 GB total RAM
4 3.5” 7200 RPM 2 TB SATA 6.0 Gbps Drives (Software RAID0)

2. Dell PowerEdge R620
Dual Intel Xeon E5-2660 (Sandy Bridge) CPUs @2.20 GHz

32 logical cores total (HT on)
8 x 8 GB DDR3 1600 MHz DIMMs

64 GB total RAM
8 2.5” 7200 RPM 500 TB SATA 6.0 Gbps Drives (Software RAID0)

9

Hardware Benchmarked (Cont.)

3. Dell PowerEdge R410
Dual Intel Xeon X5660 (Westmere) CPUs @2.80 GHz

 24 logical cores total (HT on)
6 x 8 GB DDR3 1333 MHz DIMMS

48 GB total
4 3.5” 7200 RPM 1 TB SATA 3.0 Gbps Drives (Software RAID0)

10

HEPSPEC06

E5-2660v2 (40 processes) E5-2660 (32 processes) X5660 (24 processes)

190

210

230

250

270

290

310

330

350

370

390

368.79

324.06

209.46

373.85

325.76

211.77

374.92

335.1

204.09

379.43

335.9

207.54

366.77

322.94

204.76

368.31

319.07

208.27

372.34

325.21

200.04

373.85

328.95

200.21

No Tuning
100ms khugepaged
scan_sleep_millisecs
100ms khugepaged, numad -i 15
100ms khugepaged, numad -i 30
1000ms khugepaged, numad -i 15
1000ms khugepaged, numad -i 30
numactl node cpu bind, preferred
node memory bind, 100ms
khugepaged
numactl forced cpu and memory
node bind, 100ms khugepaged

System CPU

HS06

Larger Values Preferred

11

HEPSPEC06 (Cont.)

Performance improvement by simply decreasing khugepaged
scanning period to 100ms from default 10000ms

Running numad improved HS06 performance for systems with
newer Intel CPUs with more cores

Max scanning interval of 30 seconds best for these systems
1.5% effect for Ivy Bridge and 3.1% for Sandy Bridge

Running numad on Westmere (lower core count) reduced
performance

Manual NUMA bindings for each HS06 process had little effect
on systems with newer Intel CPUs

Detrimental on the Westmere host

12

ATLAS Software in Parallel – Reconstruction

E5-2660v2 (40 processes) E5-2660 (32 processes) X5660 (24 processes)

400

420

440

460

480

500

520

540

560

580

600

553.73

517.24

574.75

557.12

516.34

580.7

536.48

495.78

563.65

545.74

506.48

545.01

552.39

515.78

573.98

547.99

514.55

580.5

No Tuning
100ms khugepaged
scan_sleep_millisecs
100ms khugepaged, numad -i 15
100ms khugepaged, numad -i 30
numactl node cpu bind, preferred
node memory bind, 100ms
khugepaged
numactl forced cpu and memory
node bind, 100ms khugepaged

System CPU

Average
Execution
Time Per
Job in
Seconds

Smaller Values Preferred

13

ATLAS Software in Parallel – Reconstruction (Cont.)

khugepaged scanning period decrease lead to a slight
performance increase for Sandy Bridge, and a small
performance decrease for Ivy Bridge and Westmere

Numad improved performance on all systems
Max scanning interval of 15 seconds appears best on
systems with newer CPUs
Reduced execution wall time by 1.9-4.2% per process

Smaller benefit seen from manual bindings with numactl

14

ATLAS Software in Parallel – Simulation

E5-2660v2 (40 processes) E5-2660 (32 processes) X5660 (24 processes)

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

1441.87
1433.01

1483.91

1392.07

1378.57

1416.63

1457.35

1441.74 1445.13
1453.85

1429.51

1453.23

1390.83

1376.85

1416.96

1392.81

1376.65

1416.54

No Tuning
100ms khugepaged
scan_sleep_millisecs
100ms khugepaged, numad -i 15
100ms khugepaged, numad -i 30
numactl node cpu bind, preferred
node memory bind, 100ms
khugepaged
numactl forced cpu and memory
node bind, 100ms khugepaged

System CPU

Average
Execution
Time Per
Job in
Seconds

Smaller Values Preferred

15

ATLAS Software in Parallel – Simulation (Cont.)

khugepaged scanning period change to 100ms improved
performance by 3.5-4.5%

Numad reduced simulation performance by 2.6-4.4% (30
second max interval setting)

No benefit seen from manual bindings with numactl

Do the majority of simulation data manipulations fit in processor
cache?

16

Conclusions

Specific NUMA tunings best for different workloads and hardware
Unfortunately there doesn't appear to be a “one size fits all”
option

Overall, changing the sysfs khugepaged scanning period
(scan_sleep_millisecs) to 100ms was beneficial to typical
HEP/NP workloads on dual-CPU Intel Xeon based systems

Performance gains (~2-4%) were seen on systems with newer
Intel CPUs (more cores) running numad, but only for
HEPSPEC06 and reconstruction

Simulation performance was reduced by numad
Recommend starting this daemon on dual-CPU Sandy Bridge
or Ivy Bridge systems where simulation jobs are not run

Suitable for a processor farm where particular queues/jobs
are restricted to run on distinct sets of hosts
One can also instruct numad to ignore certain PIDs
via the '-x' option: doesn't require daemon restart

Would require batch system modification or a job wrapper

17

Conclusions (Cont.)

Manual static NUMA bindings with numactl lead to slight
performance gains, or no effect for all benchmarks on systems
with newer CPUs

Numad and numactl tunings may lead to more significant
performance increases on quad-socket servers

Additional NUMA nodes and cores increase OS scheduling
and memory allocation complexity

18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

