
ROOT6:

The Quest For
Performance

Danilo Piparo – CERN, PH-SFT
For the ROOT Team

•  Illustrate strategies adopted to increase ROOT performance
•  Review design choices and lessons learned

2 16/4/2015

Successful collaboration of the ROOT team and the LHC
experiments. Without their contribution, ROOT6 would
not be as good as it is now.

CHEP2015, Okinawa – Track 4

Problem: ROOT5 interpreter Cint
•  C parser, with some C++ capabilities
•  Reflection, I/O: no support for new C++ standards, e.g. C++11

•  Cracks in the infrastructure: e.g. support for gccxml on OSX

Solution: Replace Cint with Cling
•  Cling: a C++ interpreter based on Clang/LLVM technology

Side effect: a lot of work!
•  We believe the benefits outweigh the costs

3 16/4/2015

A production quality
compiler toolkit!

Investments are needed for future sustainability

CHEP2015, Okinawa – Track 4

Push forward software technology
•  Cling: first of its kind (JIT of C++!)
•  Re-write of entire ROOT Core components

•  Including layer between ROOT and its interpreter

Existing features to support, rich set of new ones
•  Many users: O(104) – Backward compatibility guarantees
•  Experiment setups: multi-MLOC software systems

A quest but an opportunity
•  Such a radical change rarely happens in core software

4 16/4/2015

Improve strategies to evolve our sw, e.g. with agile techniques

Compared with CINT,
optimised during 20y!

CHEP2015, Okinawa – Track 4

C++ entities in Clang: Abstract Syntax Tree (AST)
•  Classes, functions, templates, statements …
•  Exists in memory and can be persisted on disk in two forms

1) Pre-Compiled Header: can load only one, file granularity

2) Pre-Compiled Modules: can load many, AST node granularity
•  Both queried lazily by the compiler

•  Dictionaries: a thin layer around portions of AST

Original ROOT6 design: AST source of information for
•  Reflection and I/O
•  Interactive function calls

5 16/4/2015

.h PCM
PCM: Bleeding edge
technology during LS1

CHEP2015, Okinawa – Track 4

Lib1

Lib2

Libn

ROOT

6 16/4/2015

PCH
(Interfaces of ROOT

classes + STL)

…

PCM1

Establish connection with Cling (static initialisation)

Provides
implementations

Provides
interfaces

Type
System

 Cling AST

Qu
er

y

Re
fle

ct
io

n
in

fo
 Ot

he
r

Co
m

p.

PCM2

PCMn

CHEP2015, Okinawa – Track 4

Lib1

Lib2

Libn

ROOT

7 16/4/2015

…

Qu
er

y

Re
fle

ct
io

n
in

fo

C++ PCMs not delivered
on time by Clang

Provides
implementations

PCH
(Interfaces of ROOT

classes + STL)

 Cling AST

PCM1

PCM2

PCMn

Provides
interfaces

Type
System

Ot
he

r
Co

m
p.

Establish connection with Cling (static initialisation)

CHEP2015, Okinawa – Track 4

ROOT

8 16/4/2015

Lib1

Lib2

…

Libn

Provide
interfaces

Qu
er

y

Re
fle

ct
io

n
in

fo

hdrs1

Lib2
headers
Lib2

headers hdrs2

Lib2
headers hdrsn

Use header files. Parsing
costs memory & runtime

Provides
implementations

PCH
(Interfaces of ROOT

classes + STL)

Parsed at load time (static initialisation)

 Cling AST

Type
System

Ot
he

r
Co

m
p.

CHEP2015, Okinawa – Track 4

•  Issue solved already in Autumn 2014
–  6.02, 6.04 series not affected!

•  Consequences of absent PCMs at the time:
–  Good for analysis and single users
–  Too much memory when integrated with LHC experiments’

software stacks: ~1 GB RSS extra L

–  Runtime penalty associated to these allocations

9 16/4/2015

Adapt quickly to changing reality

CHEP2015, Okinawa – Track 4

10 16/4/2015

Improve memory consumption: Reduce parsing

1) I/O operations
•  I/O info for selected classes in “ROOT-PCMs” (ROOT files)
•  Optimise file format for those

•  Information forwarded directly to ROOT type system

2) Interactive usage
•  Parse “on demand” (or “Autoparsing”)

Trigger parsing of headers related to library only when needed
a.  To call functions and methods

b.  To get I/O info when not provided by ROOT-PCMS

Iterative, incremental, evolutionary
CHEP2015, Okinawa – Track 4

11 16/4/2015

ROOT

Lib1

Lib2

…

Libn

Qu
er

y

Re
fle

ct
io

n
in

fo

hdrs1

Lib2
headers
Lib2

headers hdrs2

Lib2
headers hdrsn

PCH
(Interfaces of ROOT

classes + STL)

 Cling AST

Parsed at load time (static initialisation) Type
System

Ot
he

r
Co

m
p.

CHEP2015, Okinawa – Track 4

12 16/4/2015

ROOT

Lib1

Lib2

…

Libn

Qu
er

y

Re
fle

ct
io

n
in

fo

hdrs1

Lib2
headers
Lib2

headers hdrs2

Lib2
headers hdrsn

PCH
(Interfaces of ROOT

classes + STL)

 Cling AST

Parse when needed

Forward information to
ROOT type system directly

ROOT
PCM1

ROOT
PCM2

ROOT
PCMn

Read at load time

Type
System

Ot
he

r
Co

m
p.

CHEP2015, Okinawa – Track 4

Memory

•  pp→ttbar events @ 13 TeV (event loop):
–  Generation & Simulation: -6% RSS wrt ROOT5

à Yes, better than ROOT5 J

–  Reconstruction: +4% MB RSS wrt ROOT5

•  RSS variations: depend on amount of interpreted functions
–  E.g. cuts specified in job configuration

Runtime: ~Identical in the event loop

13 16/4/2015 CHEP2015, Okinawa – Track 4

Also thanks to experiments’ flexibility and
willingness to make this happen – thank you!

Why? Profiling & improvements: meaningless w/o correctness!

•  Significant expansion of ROOT test suite

–  Target test-driven development

–  All plugins and externals tested (e.g. Davix, xRootd)

•  In addition: increase of test platforms (~8 -> ~17)

–  And planning to add more, also non-x86_64*

*

See:
493: Future Computing Platforms for Science in a Power Constrained Era

500: Building a Tier-3 Based on ARMv8 64-bit Server-on-Chip for the WLCG

14 16/4/2015 CHEP2015, Okinawa – Track 4

15 16/4/2015 CHEP2015, Okinawa – Track 4

Public link to status of tests:
cdash.cern.ch/index.php?project=ROOT Impossible to optimise w/o

continuous & automatised
correctness checks

•  Very first feature seen by the user
–  Baseline: ROOT5, ~100 ms (Python 2.7 ~20 ms)

Solution:

16 16/4/2015 CHEP2015, Okinawa – Track 4

•  Leverage PCH to store I/O
information of ROOT most used
classes (Hist, RooFit, …)

•  Optimise data structures and
algorithms holding/manipulating
autoloading info: e.g. use STL!

•  Optimise reading of ROOTmap files

Strive for technical
excellence in all corners

IgProf
•  Both for memory and runtime studies
•  “Make diffs” of counters’ snapshots, e.g.:

–  Given a symbol: Event-by-event differences in memory

Valgrind family
•  Callgrind: very short runs (e.g. startup times)

•  Massif: complement IgProf information and information display

Kernel Data Structures
•  “Poor Man’s Solution” TSystem::GetProcInfo
–  e.g.: memory before/after method invocation

–  Use as “tracing bullet”

17 16/4/2015 CHEP2015, Okinawa – Track 4

poormansprofiler.org

Crucial to choose the right ones

ROOT6: many new features, backward compatible
•  We now look towards an exciting future!

Lessons learned:
•  Agile principles: asset when betting on cutting edge sw technologies
•  Close collaboration with “clients”: clear benefit for big sw projects
•  Ruthless, automated & ubiquitous testing: requirement of ambitious

performance improvement campaigns
•  “Right” mix of profiling tools can make the difference

•  LHC, SuperKEKB, Intensity Frontier: Challenging scenarios!
à The quest will continue
–  Leverage even more STL in the ROOT Core
–  More vectorisation (and het. platforms): Tree analysis and Math
–  Better integration with profilers
–  Exploit many cores architectures even more

18 16/4/2015 CHEP2015, Okinawa – Track 4

19 16/4/2015 CHEP2015, Okinawa – Track 4

Linux,
GCC 4.9.2

ROOT6: written in C++11. Need recent compiler (e.g. GCC ≥ 4.8)
•  Idea: leverage compilers’ optimisations (“-Ofast”)
–  Optimise FP treatment (e.g. operands re-ordering)
–  More inlining

•  Improve routines fragile wrt
changes in FP behaviour
•  Optional, not the default

20 16/4/2015 CHEP2015, Okinawa – Track 4

+4% wrt opt

Enabled with -D CMAKE_BUILD_TYPE=Optimized

“Technical” (non algorithmic)
optimisations do matter.

