

Data Science for Improving CERN's Accelerator Complex Control Systems

Manuel Martín Márquez International Conference on Computing in High Energy and Nuclear Physics CHEP 2015 – Okinawa, Japan

The Large Hadron Collider (LHC)

Hottest spot in the galaxy

During Lead ion collisions create temperatures 100 000x hotter than the heart of the sun;

CERN's Accelerator Complex

Accelerator Control and Operation

Improve Control and Operations

Million of sensors, large number of control devices, front-end equipment, etc. Many critical systems: Cryogenics, Vacuums, Machine Protection, etc.

The Challenge

Maximize operation efficiency and availability

Corrective Interventions

Reduce and predict faults and corrective interventions

Data Analytics Challenges

A look into the future

	8	Ni.		2015
Parameter	2010	2011	2012	design value
Beam energy	3.5	3.5	4	7
β* in IP 1 and 5 (m)	2.0/3.5	1.5/1.0	0.6	0.55
Bunch spacing (ns)	150	75/50	50	25
Max. number of bunches	368	1380	1380	2808
Max. bunch intensity (protons per bunch)	1.2×10 ¹¹	1.45 × 10 ¹¹	1.7×10 ¹¹	1.15×10 ¹¹
Normalized emittance at start of fill (mm mrad)	≈2.0	≈2.4	≈2.5	3.75
Peak luminosity (cm ⁻² s ⁻¹)	2.1 x 10 ³²	3.7 x 10 ³³	7.7 x 10 ³³	1 x 10 ³⁴
Max. mean number of events per bunch crossing	4	17	37	19
Stored beam energy (MJ)	≈28	≈110	≈140	362

Data Analytics Challenges

Profit from our data investment

Data Analytics Objective

Control and Monitoring Systems

Intelligent, Predictive and Proactive Systems

CERN's Data Analytics Use Cases

- Control System
 - Cryogenics
 - Vacuum
 - Machine Protection
 - Power Converters
 - QPS

Largest Cryogenics Installation

- 27 km of decentralized instrumentation and control
- 50k I/O, 11k actuators, ~5k control loops
- Control:
 - ~100 PLCs (Siemens, Schneider),
 - ~40 FECs (industrial PCs)
- Supervision: 26 SCADA servers

Instrument/Actuators	Total
Temperature [1.6 – 300 K]	10361
Pressure [0 - 20 bar]	2300
Level	923
Flow	72
Flow	2633
Control valves	3692
On/Off valves	1835
Manual valves	1916
Virtual flow meters	325
Controllers (PID)	4833

Faulty Cryogenics Valve Detection

B(S) =

- Signals used:
 - S = aperture order aperture measured
- Features extractions based on S
 - Variance
 - Percentile 99.9
 - Rope distance R(S) $R(S) = \frac{1}{N} \sum_{i=2}^{N} |S(i) S(i-1)| \sum_{k=1}^{\infty} Pxx(k)$
 - Noise Band B(S) (Pxx be the power spectrum of the signal S, from 0 to 0.5Hz, where S has been previously mean-centred).
- Automatic Faulty Valves Detection System
 - SVM Support Vector Machine

Anomaly Detection on Beam Screen Cryogenic Control

- PID output (time series) segmentation
- Characterization + Feature extraction
- Features based classification

Source: EN-ICE (Benjamin Bradu, Enrique Blanco)

Beam Pipe

CERNopenlab

Data Discovery - Accelerator Complex Operations **CERN** openlab

Integrating Data Sources

- Electronic Logbook
- Controls Configuration DB
- JIRA (JSON)

Text analysis **Better LHC Operations**

- **Events Analysis**
- Correlate Information
 - Fault Tracking System
 - **Operational Modes**
 - **Operational Issues**
 - **Control Equipment**

Big Data Analytics as a Service

- Batch Processing
 - Highly heterogeneous data
 - Tools (Matlab, R, Python)
- Near-real-time processing
 - Low Latency (order of second)
 - Expert knowledge + inferred
 - Scalability and fault tolerant
- Visual Analytics
 - Data discovery and exploration
- Data Repositories
 - Store large amount of data
 - Integrate with existing repositories

