A first look at 100 Gbps LAN technologies, with an emphasis on future DAQ applications

by Daniel Hugo Campora Perez, Niko Neufeld, <u>Adam Otto</u> (adam.otto@cern.ch), Flavio Pisani, Rainer Schwemmer

LHCb DAQ Upgrade

When? Long Shutdown 2

What?

- improve detectors and electronics such that the experiment can run at an instantaneous luminosity of 2*10^33 cm^-2 s^-1
- increase the event-rate from 1 MHz
 to 40 MHz

Table 1. Key paramaters of the LHCb DAQ

	Runs 1 & 2	Run 3
event-size [kB]	50 - 60	100
event-rate [MHz]	1	40
# data sources	313	500
# data sinks	up to 2000	up to 5000

Reference [1]

Impact:

- increased the event-size from between 50 and 60 kB to 100 kB
- aggregated bandwidth of 32 Tbit/s

LHCb DAQ Upgrade - Architecture

Possible 100Gbps solutions

Intel® Omni-Path

100G Ethernet

EDR InfiniBand

InfiniBand 100Gbit/s

Mellanox ConnectX 4:

 VPI – supported both technologies:

- -Fthernet
- -InfiniBand
- PCle Gen 3.0 compliant
- 256 to 4Kbyte MTU

100 Gbit/s

EDR 25 Gb/s

Study of 100G Infiniband

NIC-to-NIC:

NIC-Switch-NIC:

Testbed Details

- 2 x Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
 - 10 CORES
 - 20 THREADS
- 64GB RAM
- NIC:
 - Mellanox Technologies MT27620 Family [ConnectX-4]
 - Mellanox Technologies MT27500 Family [ConnectX-3]
- SWITCH:
 - MSB7700
 - SX6036

Testbed Details

- Scientific Linux CERN SLC release 6.6
 - kernel: 2.6.32-504.el6.x86 64
- HCA: Mellanox OFED 2.4-1.0.1
 - Alfa version of driver for ConnectX4
- Switch: MLNX OS 3.4.1102
 - Beta version
- OFED Benchmarks: Version: 5.33
- MPI: openmpi-1.8.4

Measurement methodology

Bandwidth/Latency:

- standard infiniband OFED benchmarks ran for 40 seconds per message size
- result = average bandwidth/latency for period of 40s

CPU Usage:

- measured with sar during transmission
- result = average usage for time of transmission

Memory Bandwidth

- measured with Intel PCM during transmission
- result = average memory bandwidth for time of transmission

Measurement of bandwidth, without tuning.

Network, Memory Bandwidth and CPU usage per message size

Measurement of latency, without tuning.

Tuning

BIOS Settings:

- Power profile: Maximum performance
- C-States disabled
- Turbo mode: enabled
- Memory speed: Max performance

Linux optimization:

MLNX_AFFINITY

http://www.mellanox.com/related-docs/prod_software/Performance_Tuning_Guide_for_Mellanox_Network_Adapters_v1.6.pdf

Measurement of bandwidth, after tuning.

Measurement of latency, after tuning.

OSU Benchmark

LBDAQPIPE - RDMA

ConnectX 3 vs. ConnectX 4

ConnectX 3 vs. ConnectX 4

Conclusion:

- Achieved 80Gbit/s with standard OFED benchmarks.
- 150Gbit/s Bi- Bandwidth performance
- LBDAQPIPE runs at 80Gbit/s which is so far the best obtained result.
- General results are very promising and we should expect a bandwidth to get closer to declared 100Gbit/s, once stable version of driver is released.
- Unfortunatelly, alfa version of driver doesn't support Ethernet mode.

Thank you

References

- [1]DAQ Architecture for the LHCb Upgrade, Guoming Liu and Niko Neufeld, CHEP 2013
- [2] Protocol-Independent Event Building Evaluator for the LHCb DAQ System, Daniel Hugo Campora Perez, Transactions of Nuclear Science 2014