The VISPA Internet Platform for Outreach, Education and Scientific Research in Various Experiments

Martin Urban, Daniel van Asseldonk, Martin Erdmann, Benjamin Fischer, Robert Fischer, Christian Glaser, Fabian Heidemann, Gero Müller, Thorben Quast, Marcel Rieger, Christoph Welling

III. Physikalisches Institut A
RWTH Aachen University
Motivation

- Web based platform providing a graphical front-end to infrastructures
- Deployment (once for all)
- Scalability (workspaces exchangeable)
- Access from everywhere and with many devices

More physics and less computing
Concept

Client → HTTPS → Webserver → SSH → Workspace

- Static content, scripts, and GUI
- Controller functions dispatch requests
- Workspace code, process requests

- Server Code
- Workspace Code
- Browser Code

+ Local resources
Code Editor: Edit – Run – Verify

➔ Editing, output and preview of results in one view
➔ C/C++ and Python Scripts can directly be executed
➔ Verify output figures
Extensions

- Custom applications to serve individual requirements
 → Installed on top of the platform
- Basic extensions provided in standard setup
 → Codeeditor, Filebrowser, Terminal
- Working conditions comparable to personal computer
Special Extensions

Jobmanagement:
- designer: integrate parameter scans
- submission: submission to a batch system e.g. HTC Condor, WLCG
- dashboard: overview of jobs e.g. status, runtime

Parameter Scan
- overview over all plots produced in a parameter scan → helps comparing
Server Setup at RWTH Aachen

- Load balancing allows simultaneous access of many users
 → Without balancer limited by CherryPy threads (sticky sessions)
- Apache cache for static content
 → speed up loading
- Next step: starting server instances on demand
Workspace setup at RWTH Aachen

- User authentication via common MySQL database of server instances
 - Only one database and no synchronization
 - No additional registration for workspace needed

- Home directories on external NFS
 - Highest stability, speed not depending on load of workers
 - Easy to extend

- Distributed file system (gluster) for scratch

- Server Inst. 01
- Server Inst. 16
- Worker 01
- Worker 16
- NFS server for home

- 128 cores with 2 GB RAM each
- Debian 7
VISPA in Education

- Blended Learning
- VISPA successfully used in lectures:
 - Bachelor and Master
 » Homework assignments +
 analyzing experiments demonstrated in lecture hall
 - Feedback helped to improve the platform
VISPA in Outreach

Pierre Auger Public Data

- Perform physics analyses with public data of the Pierre Auger Observatory

CERN Open Data Portal:

- One click access to CMS public data
- “Discover” e.g. the Z-Boson without installing any software
- Use examples as start for analysis
- ~ 300 Users since start

Poster Session B
Contrib. ID: 249
VISPA in Scientific Research

Currently transferring analysis designer from desktop to web version

Used modules:
- electron selection
- jet energy resolution
- b-tagging
- top reconstruction
- ...

Graph showing σ (pb) vs s (TeV) with data points and theoretical predictions.
Summary

- VISPA delivers a web GUI to infrastructures

- Used for scientific research, teaching and outreach

- Continuously improved system

- Try it (guest login available):
 www.vispa.physik.rwth-aachen.de

- Repository:
 https://forge.physik.rwth-aachen.de/projects/vispa-web