

# ALICE High Level Trigger status and plans

M.Krzewicki for the ALICE collaboration









## The ALICE experiment





- A CERN experiment @LHC
- · Optimised for heavy-ion data, takes also proton-proton.
- Located at LHC Point2 (St.Genis).





#### The data flow



#### • Run2:

- Higher interaction rates (8-30kHz PbPb).
- Readout upgrade to RCU2 + DDL2: ~2x more bandwidth.
- HLT evolved to comply with new constraints.





# The ALICE High Level Trigger

- Part of the old production system -> development cluster (~60 nodes).
  - Software development and validation.
- The new farm:
  - New layout (1 row of racks instead of 3).
    - Smaller is better cheaper, less cable, easier to cool, ...
    - Homogeneous system each node capable of all roles (FEP,CN).
    - Grouped in building blocks a 36 machines (3 racks).
    - All machines on UPS.
- Heavy utilisation of hardware acceleration: FPGA + GPU.
- Primary functions:
  - Data compression.
  - Online event reconstruction.
  - Online calibration.





# The ALICE High Level Trigger

- 180 nodes 4320 CPU cores:
  - 2x Intel Xeon E5-2697 CPUs (2.7 GHz, 12 Cores each).
  - 128 GB RAM.
  - 2x 240 GB SSD (used in Raid 1 Mirroring).
  - 1 AMD FirePro S9000 GPU.
  - 1 C-RORC board (installed in 74 nodes).
- 6+ Infrastructure Nodes:
  - 2x Intel Xeon E5-2690, 3.0 GHz 10 Cores.
  - 128 GB RAM.
  - 2x 240 GB SSD (Raid 1 mirroring).



#### • Network:

- <u>Data</u>: Infiniband in IPoIB Mode (FDR with 56Gb/s, full bisection bandwidth).
- <u>Management</u>: gigabit ethernet with sideband IPMI one physical ethernet port per node.
  - 10Gbit backbone.





# The anatomy of the ALICE HLT



- building block: 3 racks +{eth.,IB,IB} switch.
- Coloured blocks: 74 machines equipped with detector readout/DAQ interface (C-RORC).





## Provisioning and configuration

- Foreman:
  - DHCP,DNS,TFTP.
  - Puppet.
- Nodes: network boot (PXE).
  - Local/ethernet boot.
- Puppet:
  - all of local node configuration



- Current OS: Fedora 20
  - contemplating others (CentOS<sub>7</sub>)
- Full config/deployment automation
  - production system
  - development farm















## Monitoring

- Zabbix+Ganglia.
  - All compute nodes.
  - All servers.
  - Centralised, easy to use.
  - Automated alarms, trends, ...
- Automatic deployment (puppet+foreman).







## Common ReadOut Receiver Card

#### **C-RORC Overview**



- Used in ALICE DAQ+HLT and ATLAS TDAQ ROS.
- Up to 12 optical DDL links (DDL 1 & 2), 74 cards total, ~500 links.
- FPGA hosts the TPC cluster finder.





## Data compression



- Fast cluster finder in the C-RORC FPGAs:
  - 216 instances in 36 FPGAs (6 per C-RORC, one for every TPC DDL).

• VHDL (hard to maintain at this level, possible move to a higher level

description...)

- Cluster finder output is ordered
  -> compressible.
  - Data format optimisation.
  - Huffman encoding.





### Online reconstruction

- GPU based cellular automaton track finder.
  - on new farm: OpenCL (AMD GPUs).
  - also a CUDA version (used in Run 1).
  - CPU version (x86 + OpenMP option).



• <u>Same source code</u> for all versions - see talk by D.Rohr.



factor 10 speed-up wrt. the pure CPU version (or: 1GPU+3CPUs ~ 27CPUs).





#### Calibration

- Run I calibration: 2 pass scheme:
  - Calibrate the TPC tracking.
  - 2. Calibrate detectors that rely on (calibrated) TPC tracking.
- Run 2: Move (at least) the TPC calibration to online.
  - We already have online tracking...
- No changes to the proven HLT data transport framework.
- Has to run at the component level in a wrapper (see talk by D.Rohr).
- Use the EXISTING offline software (with minimal changes).
  - Common interface for online and offline data structures:
  - Same code runs online and offline.
  - Performance optimisations where necessary.





## Opportunistic use for "offline"

- When resources available: technical stops, longer shutdowns
  - → operate as a GRID site.
- OpenStack cloud.
  - Batch system(s): AliEn + HTCondor + elastiq.



- Separation from the online system:
  - VLANs.
  - VMs have dedicated disks (1 SATA SSD per node).
- Under full control of HLT.
- Only centrally managed jobs no random user jobs.
  - Security.
  - Networking constraints (shared network@Point 2).
- Fully automated config/deployment (Puppet).





## Openstack setup



• Network separation between the HLT and Openstack.





## CERN\_HLT Grid site



- First setup tested last year (development cluster).
- Production grade setup running now (development cluster).
- Use on the production system pending.





## Outlook

- New HLT farm installed @Point 2 and being deployed.
- New use cases:
  - Online calibration.
  - Opportunistic use as a Grid site.
- Future:
  - Continuous development with an eye on the O2 system.
    - GPU tracking.
    - Hardware accelerated cluster finding/compression.