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• Motivation
✔ ATLAS reconstruction is memory-hungry
✔ We needed to have a mechanism for optimizing memory footprint without 

touching the algorithmic code-base

• AthenaMP leverages Linux Copy-On-Write for sharing memory pages 
between processes, which were forked from the same master process

✔ Thus the memory sharing comes “for free”

• Originally implemented as Python layer
✔ Presented at CHEP 2009: 

“Harnessing multicores: strategies and implementations in ATLAS”, S.Binet et al.

• Later on completely rewritten in C++ to follow Gaudi Component Model

• Currently being actively used for running ATLAS production jobs on 
multi-core resources on the Grid
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History of AthenaMP
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Workflow
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Workflow (contd.)

• The master process goes through the initialization phase and then forks N sub-
processes (workers)

• By delaying fork as much as possible, we increase the amount of memory shared 
between the workers

• AthenaMP implements different strategies for scheduling workload to the worker 
processes. Each of these strategies is implemented by a specialized Gaudi AlgTool

• The workers retrieve event data independently from each other. They process 
events and write their own output files to the disc

• After all events assigned to the given job have been processed, the master usually 
proceeds with merging workers' outputs 
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• The complexity of ATLAS Event Data Model does not allow us to directly 
exchange event data objects between processes

✔ The only exception is RAW data reconstruction, where we can pass around 
event data in the form of void* memory buffer

✔ We intend to work on the ATLAS persistency infrastructure in order to address 
this issue (see “Future Developments” section later in this talk ... )

• For the time being, AthenaMP delivers workload to the worker processes in 
the form of event identifiers – either integers (event position in the input 
file) or strings (unique event token)

• For each of the above scenarios AthenaMP uses a special auxiliary process, 
which distributes event identifiers/data between worker processes

● The sub-processes of AthenaMP communicate to each other using IPC 
mechanisms (shared memory, shared queue)   
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Assigning workloads to the worker processes
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Saving memory

• RSS of 8 serial jobs compared 
to RSS of one AthenaMP job 
with 8 workers

• Actual memory savings 
depend on the job type and 
configuration

• In this example:
AthenaMP reduces overall 
memory footprint by 45% at 
the reconstruction step

• This plot has been obtained by running test jobs on otherwise empty machine and 
profiling system memory with free

Digitization Reconstruction
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• AthenaMP uses shared event queue for distributing event numbers – either 
individually or in chunks – between worker processes

• The events are assigned to workers on the “first come first served” basis
✔ A worker pulls new event from the queue after it finished processing the 

previous one

• Such dynamic distribution of the workload guarantees load balancing on the 
workers

• Shared event queue is the default strategy for running AthenaMP jobs on 
the Grid 
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Distributing event numbers. Shared Queue
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• Today ATLAS runs a
substantial fraction of its
production workloads on
the Grid using AthenaMP

• The workloads include
(but are not limited to) 
Geant4 simulation and 
simulated data 
reconstruction
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AthenaMP on the Grid

Number of CPU cores used by ATLAS production jobs

Single core Multi core

• The plot shows the number of CPU-cores used by ATLAS production jobs – 
serial and MP – on the Grid in March 2015
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• Event Service – a new approach to event processing in ATLAS
✔ Job granularity changes from files to individual events
✔ Deliver only those events to a compute node, which will be processed there by 

the payload application, don't stage in entire input files

• Event Service is agile and efficient in exploring diverse, distributed, 
potentially short-lived (opportunistic) resources: “conventional resources” 
(Grid), supercomputers, spot market clouds, volunteer computing

• For more details about Event Service see the presentation by Torre Wenaus 
at CHEP2015: “The ATLAS Event Service: A new approach to event 
processing” (Contribution #183)

• Event Service uses AthenaMP as payload application for event processing
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Fine grained Event Service
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AthenaMP and Event Service

• For the Event Service 
AthenaMP uses the strategy 
of distributing event tokens 
to the worker processes

• The tokens are retrieved from 
external source by a 
specialized AthenaMP sub-
process Token Scatterer

• Workers retrieve event data 
using the token. Data may be 
local or remote

• AthenaMP is configured to 
write new output file for 
each processed event range

• The latter functionality is implemented by the Output File Sequencer – a new mechanism 
developed in ATLAS, which is currently being used only by AthenaMP within Event Service
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AthenaMP and Yoda

• Yoda – MPI-based 
implementation of the Event 
Service, designed to run on 
supercomputer systems with 
no internet connection from 
the compute nodes

• For more information about 
Yoda see the presentation by 
V. Tsulaia at CHEP2015: “Fine 
grained event processing on 
HPCs with the ATLAS Yoda 
system” (Contribution #140)

• Payload components (AthenaMP) of the conventional event service and Yoda are 
absolutely identical
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Running at large scale

One Yoda Job
4.2K compute nodes

Over 100K AthenaMP workers
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Future developments: shared I/O workers
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Summary

• AthenaMP has successfully passed the physics validation 
procedure and now is being widely used for running ATLAS 
workloads on the Grid

• Originally developed for optimizing memory footprint of 
reconstruction jobs, AthenaMP later became an efficient 
mechanism for processing fine grained workloads

• Recent tests on supercomputers demonstrated, that 
AthenaMP can run efficiently within distributed applications 
at large scale
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