
Running ATLAS workloads within massively parallel
distributed applications using Athena Multi-Process

framework (AthenaMP)

Paolo Calafiura, Charles Leggett, Rolf Seuster

Vakho Tsulaia, Peter Van Gemmeren

For the ATLAS Collaboration

CHEP 2015, Okinawa, Japan
April 14, 2015

V.Tsulaia, ATLAS, CHEP 2015

• Motivation
✔ ATLAS reconstruction is memory-hungry
✔ We needed to have a mechanism for optimizing memory footprint without

touching the algorithmic code-base

• AthenaMP leverages Linux Copy-On-Write for sharing memory pages
between processes, which were forked from the same master process

✔ Thus the memory sharing comes “for free”

• Originally implemented as Python layer
✔ Presented at CHEP 2009:

“Harnessing multicores: strategies and implementations in ATLAS”, S.Binet et al.

• Later on completely rewritten in C++ to follow Gaudi Component Model

• Currently being actively used for running ATLAS production jobs on
multi-core resources on the Grid

- 2 -

History of AthenaMP

V.Tsulaia, ATLAS, CHEP 2015- 3 -

Workflow

V.Tsulaia, ATLAS, CHEP 2015- 4 -

Workflow (contd.)

• The master process goes through the initialization phase and then forks N sub-
processes (workers)

• By delaying fork as much as possible, we increase the amount of memory shared
between the workers

• AthenaMP implements different strategies for scheduling workload to the worker
processes. Each of these strategies is implemented by a specialized Gaudi AlgTool

• The workers retrieve event data independently from each other. They process
events and write their own output files to the disc

• After all events assigned to the given job have been processed, the master usually
proceeds with merging workers' outputs

V.Tsulaia, ATLAS, CHEP 2015

• The complexity of ATLAS Event Data Model does not allow us to directly
exchange event data objects between processes

✔ The only exception is RAW data reconstruction, where we can pass around
event data in the form of void* memory buffer

✔ We intend to work on the ATLAS persistency infrastructure in order to address
this issue (see “Future Developments” section later in this talk ...)

• For the time being, AthenaMP delivers workload to the worker processes in
the form of event identifiers – either integers (event position in the input
file) or strings (unique event token)

• For each of the above scenarios AthenaMP uses a special auxiliary process,
which distributes event identifiers/data between worker processes

● The sub-processes of AthenaMP communicate to each other using IPC
mechanisms (shared memory, shared queue)

- 5 -

Assigning workloads to the worker processes

V.Tsulaia, ATLAS, CHEP 2015- 6 -

Saving memory

• RSS of 8 serial jobs compared
to RSS of one AthenaMP job
with 8 workers

• Actual memory savings
depend on the job type and
configuration

• In this example:
AthenaMP reduces overall
memory footprint by 45% at
the reconstruction step

• This plot has been obtained by running test jobs on otherwise empty machine and
profiling system memory with free

Digitization Reconstruction

V.Tsulaia, ATLAS, CHEP 2015

• AthenaMP uses shared event queue for distributing event numbers – either
individually or in chunks – between worker processes

• The events are assigned to workers on the “first come first served” basis
✔ A worker pulls new event from the queue after it finished processing the

previous one

• Such dynamic distribution of the workload guarantees load balancing on the
workers

• Shared event queue is the default strategy for running AthenaMP jobs on
the Grid

- 7 -

Distributing event numbers. Shared Queue

V.Tsulaia, ATLAS, CHEP 2015

• Today ATLAS runs a
substantial fraction of its
production workloads on
the Grid using AthenaMP

• The workloads include
(but are not limited to)
Geant4 simulation and
simulated data
reconstruction

- 8 -

AthenaMP on the Grid

Number of CPU cores used by ATLAS production jobs

Single core Multi core

• The plot shows the number of CPU-cores used by ATLAS production jobs –
serial and MP – on the Grid in March 2015

V.Tsulaia, ATLAS, CHEP 2015

• Event Service – a new approach to event processing in ATLAS
✔ Job granularity changes from files to individual events
✔ Deliver only those events to a compute node, which will be processed there by

the payload application, don't stage in entire input files

• Event Service is agile and efficient in exploring diverse, distributed,
potentially short-lived (opportunistic) resources: “conventional resources”
(Grid), supercomputers, spot market clouds, volunteer computing

• For more details about Event Service see the presentation by Torre Wenaus
at CHEP2015: “The ATLAS Event Service: A new approach to event
processing” (Contribution #183)

• Event Service uses AthenaMP as payload application for event processing

- 9 -

Fine grained Event Service

V.Tsulaia, ATLAS, CHEP 2015- 10 -

AthenaMP and Event Service

• For the Event Service
AthenaMP uses the strategy
of distributing event tokens
to the worker processes

• The tokens are retrieved from
external source by a
specialized AthenaMP sub-
process Token Scatterer

• Workers retrieve event data
using the token. Data may be
local or remote

• AthenaMP is configured to
write new output file for
each processed event range

• The latter functionality is implemented by the Output File Sequencer – a new mechanism
developed in ATLAS, which is currently being used only by AthenaMP within Event Service

V.Tsulaia, ATLAS, CHEP 2015

AthenaMP and Yoda

• Yoda – MPI-based
implementation of the Event
Service, designed to run on
supercomputer systems with
no internet connection from
the compute nodes

• For more information about
Yoda see the presentation by
V. Tsulaia at CHEP2015: “Fine
grained event processing on
HPCs with the ATLAS Yoda
system” (Contribution #140)

• Payload components (AthenaMP) of the conventional event service and Yoda are
absolutely identical

V.Tsulaia, ATLAS, CHEP 2015

Running at large scale

One Yoda Job
4.2K compute nodes

Over 100K AthenaMP workers

V.Tsulaia, ATLAS, CHEP 2015- 13 -

Future developments: shared I/O workers

Shared READER Shared WRITER
Output

File
Input
File

finOS-fork

c
o
re

-0

WORKER 0:
Events: [0, 5, 8,…]

c
o
re

-1

WORKER 1:
Events: [1, 7, 10,…]

c
o
re

-2

WORKER 2:
Events: [3, 6, 9,…]

c
o
re

-3

WORKER 3:
Events: [2, 4, 12,…]

initinit

initfin

initfin

fin

fin

initfin

initfin

fin

fin

V.Tsulaia, ATLAS, CHEP 2015

Summary

• AthenaMP has successfully passed the physics validation
procedure and now is being widely used for running ATLAS
workloads on the Grid

• Originally developed for optimizing memory footprint of
reconstruction jobs, AthenaMP later became an efficient
mechanism for processing fine grained workloads

• Recent tests on supercomputers demonstrated, that
AthenaMP can run efficiently within distributed applications
at large scale

- 14 -

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

