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Motivation

• Current memory requirements for typical Reconstruction job:
► >3 GB physical memory per job (continues to creep up)
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• 4 (cpu/node) x 18 (core/cpu) x 2 (threads/core) 
x 3.5 (GB/process) x 8 ($/GB) = $4032

► $5.6 Million for 150k grid cores
► future processors will have 

many more than 18 core/cpu
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• 4 (cpu/node) x 18 (core/cpu) x 2 (threads/core) 
x 3.5 (GB/process) x 8 ($/GB) = $4032

► $5.6 Million for 150k grid cores
► future processors will have 

many more than 18 core/cpu

• Need to minimize memory usage
while making full use of hardware

• AthenaMP's memory savings via 
COW won't save us in the long run
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Gaudi Hive

• Gaudi Hive: multi-threaded, concurrent extension to Gaudi
► since Athena is based on Gaudi, obvious first step in our evaluation of 

multi-threaded frameworks

• Data Flow driven
► Algorithms declare their data dependencies
► Scheduler automatically executes Algorithms as data becomes available. 

• Multi-threaded
► Algorithms process events in their own thread, from a 

shared thread pool.

• Pipelining: multiple algorithms and 
events can be executed simultaneously

► some Algorithms are long, and produce data that many 
others need (eg track fitting). instead of waiting for it to 
finish, and idling processor, start a new event.

• Algorithm Cloning
► multiple instances of the same Algorithm can exist, 

and be executed concurrently, each with different 
Event Context.

► cloning is not obligatory, balancing memory usage with 
thread safety. time
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Gaudi Component Model
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Stage I: Simulated Reconstruction

• Extract Algorithm/Data dependency graph, and timing data from 
running normal Atlas Reconstruction on ttbar event.

► 161 Algs, 317 Data Objects

• Implemented a CPU Cruncher 
Algorithm to mimic CPU 
usage of each Reconstruction 
Algorithm using real timing 
data.

• Run through GaudiHive.

• Configuration parameters:
► # of concurrent events
► # Algs in flight (limit number of 

simultaneously executing Algorithms)
► size of thread pool
► cloning (multiple instances of each Algorithm)
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Simulated Reconstruction Timing Results

• Disabling cloning on all but the 7 slowest Algorithms decreases 
maximum throughput by only 1.2% 
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Stage II: Real Data Testbeds

• Run real data through real reconstruction code

• Select subsets of detector
► Calorimeter (5 Algorithms, 16 Data Objects)
► Inner Detector: SCT and Pixels (7 Algorithms, 19 DataObjects)

• Explore what needs to be modified in user code and framework 
to make it functional

► framework extensions and incompatibilities 
► thread safety

• fixing vs. locking

► ATLAS general code design patterns
• data access
• inter-event communication back channels
• shared and private Tool usage by Algorithms
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• Concurrency limited by small number of Algorithms in configuration, 
some of which could not be run concurrently for thread safety issues

• Best performance is with 6 concurrent events
► 401% event throughput, (ignoring startup to 1st event), and 36% 

increase in memory consumption vs one serial job
► 67% event throughput, and 23% of memory utilization of 6 serial 

jobs running concurrently

serial

parallel
events

speedup
wrt 

serial

speedup 
wrt 

n*Serial

memory 
ratio to 
serial

memory 
ratio to 
n*Serial

1 1.00 1.00 1.00 1.00

2 2.07 1.04 1.06 0.53

3 2.80 0.93 1.15 0.38

4 3.33 0.83 1.22 0.31

6 4.01 0.67 1.36 0.23

parallel
events
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Stage II: Framework Experiments

• In order to minimize intervention in existing ATLAS software, 
can thread safety issues in user code be limited by modifying 
the framework?

► multiple instances of Services and AlgTools (one per concurrent 
event)

► distributing event specific asynchronous Incidents to "correct" 
clients

► serializing / locking unsafe code
► limit cloning of Algorithms

• YES, but at the expense of:
► increased memory usage
► lower performance due to reduced concurrency
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Stage II: Testbed Conclusions

• Obvious benefits with speed/memory usage

• Thread Safety Issues:
► many shared Tools and Services are not thread safe or cache 

informations between events
► global static variables
► I/O must be serialized

• Software Pattern Issues:
► memory pools
► modification of data after registration in store
► automatic data loading via proxies
► Algorithms marshal many Tools, limiting concurrency
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Stage III: Hybrid MP/MT

• Hybrid multiprocess / multi-threading framework implementation
► events are distributed to worker processes via AthenaMP shared 

event queue
► multi-threading within each worker

• only one concurrent event, but multiple parallel algorithms in different 
threads

– reduce thread safety issues
– initial modeling on toy simulation shows ~8 parallel data paths for full reconstruction

• full multi-threading, with multiple concurrent events and algorithms

• Maximizes processor utilization while reducing memory 
footprint compared with pure event level concurrency

► eg 4 concurrent events:

time /s memory /MB

mp: 4 proc, 1 conc. event 32.8 1847

mp: 2 proc, 2 conc. events 34.4 1241

mp: 1 proc, 4 conc. events 53.6 935

hive: 4 concurrent events 47.8 817
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Stage IV: Geant4 Simulation

• Geant4 simulation is almost 1/2 of total ATLAS CPU budget
► ideally suited for HPC

• Run simulation with multiple concurrent threaded events to do 
full ATLAS simulation

► leverage thread safety in Geant4 v10

• Geant4 v10 can do event level parallelism via multi-threading
► take control of event loop from G4, do it within Athena

• Issues: Geant4 v10 has very different method of user class 
initialization, separating thread local and global

► will require a substantial rewrite of ATLAS G4 code

• Goal is to test production simulation apps by end of year
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Summary

• Multi-threaded framework is not a drop in replacement
► can't avoid thread safety issues by modifying framework instead 

of ATLAS code
• reduced performance benefits
• diminished memory savings 

• Much user code can survive unscathed, after changing a few 
user patterns

► no inter-event caching of data
► thread safety desired but NOT required

• Core services will require full thread safety, and no inter-event 
data caching

► non-trivial, requiring significant intervention

• Vast majority of these changes are backward compatible, and 
will likely make current serial code more efficient

• Envision evolutionary rather than revolutionary code changes 
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Extra

warning:
may cause visual discomfort
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Alg Execution Timelines for Calo Testbed
CaloCellMaker*
CaloClusterMakerSwCmb
CaloTopoCluster
CmbTowerBldr
EventCounter
SGInputLoader*
StreamESD*
xAODMaker::EventInfoCnvAlg
xAODMaker::TriggerTowerCnvAlg

time

4 threads, 4 events

6 threads, 6 events

12 threads, 12 events

10 threads, 10 events

8 threads, 8 events
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