
C Leggett 2015-04-15

Development of a Next Generation
Concurrent Framework for the

ATLAS Experiment

Paolo Calafiura, Walter Lampl, Charles Leggett,
David Malon, Graeme Stewart, Ben Wynne

for the ATLAS Collaboration

CHEP 2015

2 C Leggett 2015-04-15

Motivation

• Current memory requirements for typical Reconstruction job:
► >3 GB physical memory per job (continues to creep up)

3 C Leggett 2015-04-15

Motivation

• Current memory requirements for typical Reconstruction job:
► >3 GB physical memory per job (continues to creep up)

1970 1980 1990 2000 2010

0.01

0.05

0.5

5

50

500

5000

Processor Scaling Trends

Clock Speed [MHz]

Transistors (millions)

Power (W)

Date

4 C Leggett 2015-04-15

Motivation

• Current memory requirements for typical Reconstruction job:
► >3 GB physical memory per job (continues to creep up)

1970 1980 1990 2000 2010

0.01

0.05

0.5

5

50

500

5000

Processor Scaling Trends

Clock Speed [MHz]

Transistors (millions)

Power (W)

Date 2000 2005 2010 2015

0

10

20

30

40

CPU Core and Hardware Thread Count

Cores

Date

5 C Leggett 2015-04-15

Motivation

• Current memory requirements for typical Reconstruction job:
► >3 GB physical memory per job (continues to creep up)

1970 1980 1990 2000 2010

0.01

0.05

0.5

5

50

500

5000

Processor Scaling Trends

Clock Speed [MHz]

Transistors (millions)

Power (W)

Date 2000 2005 2010 2015

0

10

20

30

40

CPU Core and Hardware Thread Count

Threads

Cores

Date

6 C Leggett 2015-04-15

Motivation

• Current memory requirements for typical Reconstruction job:
► >3 GB physical memory per job (continues to creep up)

1980 1985 1990 1995 2000 2005 2010 2015

0

0.01

0.1

1

10

100

1000

10000

Historical Memory Prices

Date

$
U

S
 p

e
r

M
B

yt
e

1970 1980 1990 2000 2010

0.01

0.05

0.5

5

50

500

5000

Processor Scaling Trends

Clock Speed [MHz]

Transistors (millions)

Power (W)

Date 2000 2005 2010 2015

0

10

20

30

40

CPU Core and Hardware Thread Count

Threads

Cores

Date

7 C Leggett 2015-04-15

Motivation

• Current memory requirements for typical Reconstruction job:
► >3 GB physical memory per job (continues to creep up)

1980 1985 1990 1995 2000 2005 2010 2015

0

0.01

0.1

1

10

100

1000

10000

Historical Memory Prices

Date

$
U

S
 p

e
r

M
B

yt
e

1970 1980 1990 2000 2010

0.01

0.05

0.5

5

50

500

5000

Processor Scaling Trends

Clock Speed [MHz]

Transistors (millions)

Power (W)

Date

• 4 (cpu/node) x 18 (core/cpu) x 2 (threads/core)
x 3.5 (GB/process) x 8 ($/GB) = $4032

► $5.6 Million for 150k grid cores
► future processors will have

many more than 18 core/cpu

2000 2005 2010 2015

0

10

20

30

40

CPU Core and Hardware Thread Count

Threads

Cores

Date

8 C Leggett 2015-04-15

Motivation

• Current memory requirements for typical Reconstruction job:
► >3 GB physical memory per job (continues to creep up)

1980 1985 1990 1995 2000 2005 2010 2015

0

0.01

0.1

1

10

100

1000

10000

Historical Memory Prices

Date

$
U

S
 p

e
r

M
B

yt
e

1970 1980 1990 2000 2010

0.01

0.05

0.5

5

50

500

5000

Processor Scaling Trends

Clock Speed [MHz]

Transistors (millions)

Power (W)

Date

• 4 (cpu/node) x 18 (core/cpu) x 2 (threads/core)
x 3.5 (GB/process) x 8 ($/GB) = $4032

► $5.6 Million for 150k grid cores
► future processors will have

many more than 18 core/cpu

• Need to minimize memory usage
while making full use of hardware

• AthenaMP's memory savings via
COW won't save us in the long run

2000 2005 2010 2015

0

10

20

30

40

CPU Core and Hardware Thread Count

Threads

Cores

Date

9 C Leggett 2015-04-15

Gaudi Hive

• Gaudi Hive: multi-threaded, concurrent extension to Gaudi
► since Athena is based on Gaudi, obvious first step in our evaluation of

multi-threaded frameworks

• Data Flow driven
► Algorithms declare their data dependencies
► Scheduler automatically executes Algorithms as data becomes available.

• Multi-threaded
► Algorithms process events in their own thread, from a

shared thread pool.

• Pipelining: multiple algorithms and
events can be executed simultaneously

► some Algorithms are long, and produce data that many
others need (eg track fitting). instead of waiting for it to
finish, and idling processor, start a new event.

• Algorithm Cloning
► multiple instances of the same Algorithm can exist,

and be executed concurrently, each with different
Event Context.

► cloning is not obligatory, balancing memory usage with
thread safety. time

10 C Leggett 2015-04-15

Gaudi Component Model

 Persistent
Storage

User
Configuration

Files

AlgorithmsAlgorithmsAlgorithm

Configuration
Manager

initialize()

execute()

finalize()

Transient
Data Store

External
Libraries

Data
Converters

Use
Configure

ServicesServicesServices

User
Configuration

Files

User
Configuration

Files

Python
interface
interactive /

scriptable

A
p

p
lic

a
ti

o
n

M
an

a
g

er
(s

ta
te

 m
ac

hi
ne

)
co

nf
ig

ur
e

| i
ni

tia
liz

e
| e

xe
cu

te
 (

n)
 |

fin
al

iz
e

ServicesServicesAlgTools

Data
Objects

Data
Objects

Useini t ia li ze

finalize

configure

11 C Leggett 2015-04-15

Stage I: Simulated Reconstruction

• Extract Algorithm/Data dependency graph, and timing data from
running normal Atlas Reconstruction on ttbar event.

► 161 Algs, 317 Data Objects

• Implemented a CPU Cruncher
Algorithm to mimic CPU
usage of each Reconstruction
Algorithm using real timing
data.

• Run through GaudiHive.

• Configuration parameters:
► # of concurrent events
► # Algs in flight (limit number of

simultaneously executing Algorithms)
► size of thread pool
► cloning (multiple instances of each Algorithm)

12 C Leggett 2015-04-15

Simulated Reconstruction Timing Results

• Disabling cloning on all but the 7 slowest Algorithms decreases
maximum throughput by only 1.2%

0 5 10 15 20 25
0

5

10

15

20

25

Event Throughput vs. Number of Threads

serial hive = 1 event in flight, 1 alg in flight, 1 thread

1 Evt in Flight

2 Evt in Flight

3 Evt in Flight

5 Evt in Flight

10 Evt in Flight

20 Evt in Flight

30 Evt in Flight

optimal scaling

AthenaMP

Number of Threads

S
pe

ed
up

 w
rt

 S
er

ia
l

12 cores w/ hyperthreading

13 C Leggett 2015-04-15

Stage II: Real Data Testbeds

• Run real data through real reconstruction code

• Select subsets of detector
► Calorimeter (5 Algorithms, 16 Data Objects)
► Inner Detector: SCT and Pixels (7 Algorithms, 19 DataObjects)

• Explore what needs to be modified in user code and framework
to make it functional

► framework extensions and incompatibilities
► thread safety

• fixing vs. locking

► ATLAS general code design patterns
• data access
• inter-event communication back channels
• shared and private Tool usage by Algorithms

14 C Leggett 2015-04-15

50 70 90 110 130 150
0

100

200

300

400

500

600

700

800

900

1000

Calorimeter Testbed Memory Usage and Timing

1

2

3

4

6

time (s)

m
e

m
o

ry
 (

M
B

)
Calorimeter Testbed Timing Results

• Concurrency limited by small number of Algorithms in configuration,
some of which could not be run concurrently for thread safety issues

• Best performance is with 6 concurrent events
► 401% event throughput, (ignoring startup to 1st event), and 36%

increase in memory consumption vs one serial job
► 67% event throughput, and 23% of memory utilization of 6 serial

jobs running concurrently

serial

parallel
events

speedup
wrt

serial

speedup
wrt

n*Serial

memory
ratio to
serial

memory
ratio to
n*Serial

1 1.00 1.00 1.00 1.00

2 2.07 1.04 1.06 0.53

3 2.80 0.93 1.15 0.38

4 3.33 0.83 1.22 0.31

6 4.01 0.67 1.36 0.23

parallel
events

15 C Leggett 2015-04-15

Stage II: Framework Experiments

• In order to minimize intervention in existing ATLAS software,
can thread safety issues in user code be limited by modifying
the framework?

► multiple instances of Services and AlgTools (one per concurrent
event)

► distributing event specific asynchronous Incidents to "correct"
clients

► serializing / locking unsafe code
► limit cloning of Algorithms

• YES, but at the expense of:
► increased memory usage
► lower performance due to reduced concurrency

16 C Leggett 2015-04-15

Stage II: Testbed Conclusions

• Obvious benefits with speed/memory usage

• Thread Safety Issues:
► many shared Tools and Services are not thread safe or cache

informations between events
► global static variables
► I/O must be serialized

• Software Pattern Issues:
► memory pools
► modification of data after registration in store
► automatic data loading via proxies
► Algorithms marshal many Tools, limiting concurrency

17 C Leggett 2015-04-15

Stage III: Hybrid MP/MT

• Hybrid multiprocess / multi-threading framework implementation
► events are distributed to worker processes via AthenaMP shared

event queue
► multi-threading within each worker

• only one concurrent event, but multiple parallel algorithms in different
threads

– reduce thread safety issues
– initial modeling on toy simulation shows ~8 parallel data paths for full reconstruction

• full multi-threading, with multiple concurrent events and algorithms

• Maximizes processor utilization while reducing memory
footprint compared with pure event level concurrency

► eg 4 concurrent events:

time /s memory /MB

mp: 4 proc, 1 conc. event 32.8 1847

mp: 2 proc, 2 conc. events 34.4 1241

mp: 1 proc, 4 conc. events 53.6 935

hive: 4 concurrent events 47.8 817
0 20 40 60 80 100 120

0

500

1000

1500

2000

Calo Testbed Memory Usage and Timing

mp:4 th: 1

mp: 2 th: 2

mp: 1 th: 4

th: 4

time (s)

m
em

or
y

(M
B

)

18 C Leggett 2015-04-15

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

1

2

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9101112

Memory Usage vs Time for Hybrid MP/MT Calorimeter Testbed

limit (nWorkers x nThreads) ≤ 30

event throughput ratio to serial

m
e

m
o

ry
 u

sa
g

e
 r

a
tio

 to
 s

e
ri

a
l

Performance of MP/MT Hybrid

workers

threads per
worker

100 events, 32 cores

1

2

3

4

5

6

7

8

9

10

11

12

hive

1 thread per concurrent event

19 C Leggett 2015-04-15

Stage IV: Geant4 Simulation

• Geant4 simulation is almost 1/2 of total ATLAS CPU budget
► ideally suited for HPC

• Run simulation with multiple concurrent threaded events to do
full ATLAS simulation

► leverage thread safety in Geant4 v10

• Geant4 v10 can do event level parallelism via multi-threading
► take control of event loop from G4, do it within Athena

• Issues: Geant4 v10 has very different method of user class
initialization, separating thread local and global

► will require a substantial rewrite of ATLAS G4 code

• Goal is to test production simulation apps by end of year

20 C Leggett 2015-04-15

Summary

• Multi-threaded framework is not a drop in replacement
► can't avoid thread safety issues by modifying framework instead

of ATLAS code
• reduced performance benefits
• diminished memory savings

• Much user code can survive unscathed, after changing a few
user patterns

► no inter-event caching of data
► thread safety desired but NOT required

• Core services will require full thread safety, and no inter-event
data caching

► non-trivial, requiring significant intervention

• Vast majority of these changes are backward compatible, and
will likely make current serial code more efficient

• Envision evolutionary rather than revolutionary code changes

21 C Leggett 2015-04-15

Extra

warning:
may cause visual discomfort

22 C Leggett 2015-04-15

Alg Execution Timelines for Calo Testbed
CaloCellMaker*
CaloClusterMakerSwCmb
CaloTopoCluster
CmbTowerBldr
EventCounter
SGInputLoader*
StreamESD*
xAODMaker::EventInfoCnvAlg
xAODMaker::TriggerTowerCnvAlg

time

4 threads, 4 events

6 threads, 6 events

12 threads, 12 events

10 threads, 10 events

8 threads, 8 events

23 C Leggett 2015-04-15

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

1

2

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9101112

Memory Usage vs Time for Hybrid MP/MT Calorimeter Testbed

limit (nProc x nThreads) ≤ 30

execution time speedup factor wrt serial

m
e

m
o

ry
 u

sa
g

e
 r

a
tio

 w
rt

 s
e

ri
a

l

Performance of MP/MT Hybrid

workers

threads per
worker

100 events, 32 cores

1

2

3

4

5

6

7

8

9

10

11

12

hive
up to 24
threads

1 thread per concurrent event

