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« Current memory requirements for typical Reconstruction job:
» >3 GB physical memory per job (continues to creep up)
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* 4 (cpuinode) X 18 (core/cpu) X 2 (threads/core)
X 3.5 (GB/process) X 8 ($/GB) = $4032

» $5.6 Million for 150k grid cores

» future processors will have
many more than 18 core/cpu

* Need to minimize memory usage
while making full use of hardware

« AthenaMP's memory savings via
COW won't save us in the long run

C Leggett 2015-04-15




Gaudi Hive

BERKELEY LAB

 Gaudi Hive: multi-threaded, concurrent extension to Gaudi

> since Athena is based on Gaudi, obvious first step in our evaluation of
multi-threaded frameworks

 Data Flow driven

» Algorithms declare their data dependencies
» Scheduler automatically executes Algorithms as data becomes available.

 Multi-threaded

» Algorithms process events in their own thread, from a
shared thread pool.

* Pipelining: multiple algorithms and

events can be executed simultaneously

» some Algorithms are long, and produce data that many

others need (eg track fitting). instead of waiting for it to
finish, and idling processor, start a new event.

 Algorithm Cloning
> multiple instances of the same Algorithm can exist,
and be executed concurrently, each with different
Event Context.
» cloning is not obligatory, balancing memory usage with
thread safety. time —»
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e Gaudi Component Model
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o Stage |: Simulated Reconstruction

Extract Algorithm/Data dependency graph, and timing data from
running normal Atlas Reconstruction on ttbar event.

» 161 Algs, 317 Data Objects

Implemented a CPU Cruncher
Algorithm to mimic CPU
usage of each Reconstruction
Algorithm using real timing
data.

* Run through GaudiHive.

« Configuration parameters:
» # of concurrent events

> # Algs in flight (limit number of
simultaneously executing Algorithms)

> size of thread pool
» cloning (multiple instances of each Algorithm)
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Simulated Reconstruction Timing Results
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20—

15

Speedup wrt Serial

10+

Event Throughput vs. Number of Threads

serial hive = 1 event in flight, 1 alg in flight, 1 thread

] Evt in Flight
m—e—— 2 EVt in Flight

3 Evt in Flight
g 5 BV iN Flight
m—=— 10 EVt in Flight
m—p—— 70 EVt in Flight

30 Evt in Flight
---------------- optimal scaling

% AthenaMP

Number of Threads

12 cores w/ hyperthreading

» Disabling cloning on all but the 7 slowest Algorithms decreases
maximum throughput by only 1.2%
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Stage ll: Real Data Testbeds

* Run real data through real reconstruction code

« Select subsets of detector
» Calorimeter (5 Algorithms, 16 Data Objects)
> Inner Detector: SCT and Pixels (7 Algorithms, 19 DataObijects)

* Explore what needs to be modified in user code and framework
to make it functional
» framework extensions and incompatibilities
> thread safety
« fixing vs. locking
> ATLAS general code design patterns
» data access

* inter-event communication back channels
* shared and private Tool usage by Algorithms
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Calorimeter Testbed Timing Results

memory (MB)

Calorimeter Testbed Memory Usage and Timing

........

parallel
events

time (s)

parallel | speedup | speedup | memory memory
events wrt wrt ratio to ratio to
serial n*Serial serial n*Serial

1 1.00 1.00 1.00 1.00

2 2.07 1.04 1.06 0.53

3 2.80 0.93 1.15 0.38

4 3.33 0.83 1.22 0.31

6 4.01 0.67 1.36 0.23

Concurrency limited by small number of Algorithms in configuration,
some of which could not be run concurrently for thread safety issues

Best performance is with 6 concurrent events
> 401% event throughput, (ignoring startup to 1° event), and 36%

Increase in memory consumption vs one serial job

> 67% event throughput, and 23% of memory utilization of 6 serial
jobs running concurrently

C Leggett 2015-04-15



) Stage Il: Framework Experiments

 In order to minimize intervention in existing ATLAS software,
can thread safety issues in user code be limited by modifying
the framework?

> multiple instances of Services and AlgTools (one per concurrent
event)

> distributing event specific asynchronous Incidents to "correct”
clients

» serializing / locking unsafe code
> limit cloning of Algorithms

* YES, but at the expense of:
> increased memory usage
> lower performance due to reduced concurrency




)| Stage II: Testbed Conclusions

* Obvious benefits with speed/memory usage

* Thread Safety Issues:

> many shared Tools and Services are not thread safe or cache
informations between events

> global static variables
> |/O must be serialized

« Software Pattern Issues:
> memory pools
» modification of data after registration in store
» automatic data loading via proxies
» Algorithms marshal many Tools, limiting concurrency
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el Stage lll: Hybrid MP/MT

« Hybrid multiprocess / multi-threading framework implementation
» events are distributed to worker processes via AthenaMP shared

event queue
> multi-threading within each worker

 only one concurrent event, but multiple parallel algorithms in different

threads
— reduce thread safety issues

— initial modeling on toy simulation shows ~8 parallel data paths for full reconstruction
« full multi-threading, with multiple concurrent events and algorithms

* Maximizes processor utilization whi
footprint compared with pure event

> eg 4 concurrent events:

time /s memory /MB

mp: 4 proc, 1 conc. event 32.8 1847
mp: 2 proc, 2 conc. events 34.4 1241
53.6 935

hive: 4 concurrent events 47.8 817

e reducing memory
evel concurrency

Calo Testbed Memory Usage and Timing
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) Performance of MP/MT Hybrid

Memory Usage vs Time for Hybrid MP/MT Calorimeter Testbed
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Stage IV: Geant4 Simulation

« Geant4 simulation is almost 1/2 of total ATLAS CPU budget
> ideally suited for HPC

* Run simulation with multiple concurrent threaded events to do
full ATLAS simulation

> leverage thread safety in Geant4 v10

« Geant4 v10 can do event level parallelism via multi-threading
» take control of event loop from G4, do it within Athena

* Issues: Geant4 v10 has very different method of user class
Initialization, separating thread local and global

> will require a substantial rewrite of ATLAS G4 code

* Goal is to test production simulation apps by end of year
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* Multi-threaded framework is not a drop in replacement

> can't avoid thread safety issues by modifying framework instead
of ATLAS code

» reduced performance benefits
 diminished memory savings

* Much user code can survive unscathed, after changing a few
user patterns
> no inter-event caching of data
» thread safety desired but NOT required

« Core services will require full thread safety, and no inter-event

data caching
> non-trivial, requiring significant intervention

» Vast majority of these changes are backward compatible, and
will likely make current serial code more efficient

* Envision evolutionary rather than revolutionary code changes
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Extra

warning:
may cause visual discomfort
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) Performance of MP/MT Hybrid
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Memory Usage vs Time for Hybrid MP/MT Calorimeter Testbed
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