
Dynamic partitioning as a way to exploit new computing
paradigms: the cloud usecase.

Vincenzo Ciaschini, Stefano Dal Pra, Luca dell’Agnello

INFN–CNAF, {vincenzo.ciaschini, stefano.dalpra, luca.dellagnello}@cnaf.infn.it

I N N

Problem, usecase, motivation

•The whole INFN-T1 farm (∼ 15000 cores) is currently accessible as a
“traditional” Grid resource (CREAM Computing Element, LSF Batch System)

•Problem: We would like to be able to dedicate hardware resources to Cloud
Computing for HEP purposes in a flexible and reversible manner.
•Use cases:
• A VO may want to dedicate a certain amount of computing power to a “cloud computing

campaign”, then move back the resources to Grid.
• A VO may want to perform a “smooth migration” from Grid to cloud, moving resources a few

at a time.
• A team may need interactive usage of computing resources.

Analysis

Providing resources for both Grid and Cloud computing requires to:

•Remove a number of WNs from the control of the LSF batch system.

•Enable them as Compute Nodes (CN) under the control of a Cloud Controller.

•Assign them to one ore more tenants.

•Possibly convert additional WNs to Compute Node, or reclaim some of them
back in the Grid farm.

Shares

Shares in the Grid farm must be adjusted, so that:

•Any experiment moving k WN from Grid to Cloud, should have its share in LSF
reduced accordingly.

•Any experiment not using cloud resources, should not be affected by the
reduced power of the Grid farm.

Wall–clock Time

An overall Wallclock–Time must be accounted, by adding two components:

•Grid–side, the Wall–clock time is accounted per–job, as usual.

•Cloud–side, the Wall–clock time is accounted per–node

Exploiting a solution: dynamic partitioning

A dynamic partitioning mechanism has been deployed at INFN-T1 for the
provisioning of multi–core resources. The same technique can be adapted to
achieve a Cloud partition.

•The Cloud partition can grow or shrink on a per–need basis (Elasticity).

•On each node, both LSF and Openstack daemons are active. Only one or the
other mode can be enabled at a time.

•A Draining phase is needed before moving from a partition to the other

•When a WN is assigned to the Cloud partition, LSF stops dispatching jobs to it
(Draining). Then it becomes available to the Cloud Controller.

The implementation

• elim script. It runs on the WN and defines the value of the dcloud flag.

• esub script. It is executed at the submission host for each submitted job,
enforcing a request for nodes having a resource dcloud!=1.

• director script. implements the logic of the partitioning model. It runs at regular
times on a master node and selects which WNs or CNs are to be moved from
the partition they belong to.

The Partition Director

• Implemented as finite state machine

• LSF side:
•manages the status of the dcloud flag on the nodes. This is achieved by customizing
esub,elim scripts and enable/disable job dispatching.

•Cloud side:
• enable/disable scheduling to the CNs (ref. to Openstack, Juno; this is done using api call to
nova-compute).
• destroy existing VM on the CN after a timeout (∼24h). This can be achieved thanks to the

work done by the WLCG MachineJobFeatures TaskForce.

The Dynamic Partitioning model

LSF Batch System

WN1

WN2

...

WNN−k

Partition
Director

Cream CE

Cloud Controller
(Openstack–Juno)

CN1

CN2

...

CNk

Pilot
Factory

Grid Farm

Cloud Farm

Figure: The partition director switches a node between Worker Node or Compute Node roles.

Dynamic of the dcloud partition

• At T = 0, all nodes are
ci ∈ G = {c1, . . . , cN}
•When k Compute Nodes are requested, they

are moved to Drain from G to
DG = {c1, . . . , ck} by the director.

•When the drain finishes, it is moved from DG

to C and becomes available as a Compute
Node.

•When a Compute Node ci ∈ C must work
again as a WN, it is moved to DC and begins
a drain time. The duration can be specified
through the shutdowntime parameter
from the machinejob features.

•When a Compute Node ci ∈ DC expires its
shutdowntime, Existing VMs are
destroyed and the node moves to G .

•The elim script on each node wi updates its
dcloud status:

dcloud(wi) =

{
1 if ci ∈ DG ∪ C
0 if ci ∈ G ∪ DC

G : 0 DG : 1

C : 1Dc : 0

Figure: The Status Transition Map

Conclusions

•Dynamic partitioning permits cohexistence of Grid and Cloud applications.

•Transition from Cloud–mode to Grid–mode requires to deal with existing VMs
after a draining time. User’s applications should be aware machinejob aware.

References

•Openstack api–reference: http://goo.gl/3ZZTJl

• S.Dal Pra “Efficient provisioning for multicore applications with LSF “,
CHEP–2015, http://goo.gl/7hRVUf

• S. Dal Pra “Job Packing: optimized configuration for job scheduling”, HEPiX
Spring 2013 Workshop, http://goo.gl/3ZZTJl

• LSF Admin guide http://goo.gl/tZ0fmj

http://goo.gl/3ZZTJl
http://goo.gl/7hRVUf
http://goo.gl/3ZZTJl
http://goo.gl/tZ0fmj

