

Ceph-based storage services for Run2 and beyond

Dan VAN DER STER, Massimo LAMANNA, Luca MASCETTI, **Andreas PETERS**, Hervé ROUSSEAU (all CERN IT-DSS)

CHEP 2015 – Okinawa – 16 April 2015

Status

- 3 petabyte cluster in production for ~18 months
 - OpenStack Cinder volumes and Glance images
 - 500TB used (including triple replication)
 - ~3000 block devices: 1200 volumes, 1800 images
 - 2 availability zones at CERN, 1 coming in Budapest
- Plenty of useful ops experience
 - Performance tuning in software and with SSDs
 - Host failures, power outages, network incidents
- Ceph for physics data storage?
 - Ongoing development projects
 - Large scale (10's PBs) tests early results

Storage for OpenStack

- Basic model: user boots a VM and attaches an arbitrarily large block device
- On-demand storage enables cool applications:
 - Horizontal scalability for central VO services (e.g. ATLAS PanDA, CMS GlideinWMS, CMS Webtools...)
 - Close to 100TB of ZFS-based virtual NFS servers
 - CVMFS squids and (soon) stratum zero
 - Many applications we don't follow closely: ~1000 VMs have an attached Ceph volume
- Tunable performance: IOPS is configurable (per attached volume)
- Cost efficiency with thin provisioning: we have successfully replaced a NetApp and other expensive custom storage servers using this model

IOPS - Do we need SSDs?

- Ceph uses write-ahead journaling to guarantee write durability
 - Client sees write ack after it is persistent on all replicas
- Two general use-cases:
 - Block: Slow spinning disks will result in unacceptable latency
 - Object: throughput is more important than latency, so SSDs not needed
- 5-10x increase in 4kB write IOPS capacity after installing SSD journals
 - Plus decreased small write latency from ~50ms to 5-10ms (see upper plot)
- Which SSDs to buy?
 - You need high endurance and stable random write performance (see lower plot)
 - We use the 200GB Intel DC S3700 (with 5 journals per SSD)

Ceph (and Linux) Tuning

- The ceph-mon's LevelDB can become very busy during backfilling
 - SSDs are absolutely required on your ceph-mon!!!
 - Scrubbing can be very IO intensive
 - Scrubs triggered periodically (default=weekly) often all at the same time every week (similar to a thundering herd...)
 - You should manually smear the scrubs across the week
- Scrub IOs compete with user IOs:
 - Use cfq on the data disks and ionice (idle) the OSD scrub thread
- Handling many small files
 - Hosting 100's of thousands of files puts immense cache pressure on inode/dentry cache (check vm.vfs_cache_pressure)
 - NUMA zone reclaim is a disaster (on RHEL 6). To disable it: vm.zone_reclaim_mode = 0
- Ceph uses many many threads (and sockets)
 - Servers need kernel.pid_max = 4194303
 - Clients need ulimit -n > 4096
- Disable updatedb for /var/lib/ceph

Interesting Incidents

Disk & host failures

- Disks fail ~monthly in the cluster: completely transparent to our clients
- Twice lost a whole host: in both cases the host could be recovered by a human. We now disabled automatic backfilling in this case:

mon osd down out subtree limit = host

Power cut 16 October 2015

- 3 out of 5 Ceph monitors lost power => no quorum
- Cluster down for ~18 minutes as a result
- VM IOs were blocked during this time => no corruptions reported
 - virtio-blk has this feature. virtio-scsi would have timed out IOs

Router card failure 13 March 2015

- Random packet loss led to OSDs going up/down over many hours
- A few OSDs (~20) reached a heartbeat timeout and committed suicide
- Random network badness, lots of backfilling: intermittent volume access
- No data corruption reported & confirmed. No data scrub inconsistencies.

30 petabyte test

- We borrowed 150 servers 192TB each for a short lived Ceph scale test
 - General summary: it works! and performance was pretty good.
- ... what's the catch?
- We found a scalability limitation:
 - An osdmap is a blob which contains the structure of the cluster, the directory of OSDs, the CRUSH map, etc...
 - With 7200 OSDs the osdmap was ~4MB in size
 - Each OSD caches up to 500 previous versions of the osdmap even with some deduplication each OSD consumed 3-4GB RAM. 48 OSDs per server → ~200GB RAM needed just to cache the osdmaps!!!!
 (And we feel this is wasted RAM, since old osdmaps are mostly not useful)
 - We found a workaround (cache fewer maps) but there must be a better solution!
 - See backup slides for performance details, if time permits.

Use-cases beyond OpenStack

- RADOSGW running in pre-prod for S3:
 - Horizontally scalable with civetweb and haproxy
 - Use-cases: CVMFS stratum zero, BOINC work-units uploads with pre-signed URLs
 - 35 million objects
- CASTOR tape buffer
 - V2.1.15 adds RADOS support for striping object storage
- EOS DIAMOND R&D, see:
 - https://indico.cern.ch/event/304944/session/3/contribution/ /297

30PB test: single 10GbE client

- Saturates at ~900MBps with 32 threads for writing, 8 threads for reading
- Little difference between jerasure and ISA coding

30PB test: single client IOPS

- One client can write/read at ~15000 IOPS to single replica pool. More replicas -> fewer IOPS
- Erasure coding leads to roughly halved IOPS

16 April 2015

1 Thread

4 Threads

8 Threads

32 Threads

128 Threads

Threads

8+4 ISA

512 Threads

30PB test: single client latency

- 4kB write latency scales from ~12ms for replicated pools to 50-100ms for erasure pools
- (Remember: no SSD journals used for this test)

30PB test: 150 client perf.

- Up to 52GBytes/sec writing to a 1 replica pool. Halved with 2 replicas, thirded with 3 replicas.
 - ISA still roughly equal to jerasure (didn't measure CPU consumption)
- Throughput during failures and backfilling: little impact for all profiles

