
THttpServer class in ROOT

Sergey Linev

Experiment Electronics, GSI, Darmstadt

Introduction

THttpServer class implements http server for arbitrary

ROOT-based applications. It is based on Civetweb

embeddable http server and provides direct access to all

objects registered to the server. Support of FastCGI

allows to integrate it with standard web servers like

Apache or lighttpd.

Server provides access to objects, data members and

collections in different formats: binary, JSON, XML. One

also could execute object methods or commands

registered to the server.

JavaScript ROOT used to implement generic user

interface. With any modern web browsers one could list,

display and monitor objects available on http server.

Different possibilities are provided to integrate dynamic

web elements into other HTML pages.

http protocol to ROOT

THttpServer implements various http requests:

 h.json objects hierarchy description (TRootSniffer)

 h.xml objects hierarchy in XML

root.json object data in JSON format (TBufferJSON)

 root.bin object data in binary format (TBufferFile)

 root.xml object data in XML format (TBufferXML)

 root.png object drawing on TCanvas

 exe.json objects method execution

 cmd.json execution registered to server commands

These requests are used to implement web GUI, but

can be also invoked with http clients like wget or curl

 wget http://localhost:8080/hpx/exe.json?method=GetTitle

FastCGI support

FastCGI is a protocol for interfacing interactive programs

with standard web servers like Apache, lighttpd, Microsoft

IIS and many others. It avoids complexity of http in ROOT

and benefits from common web infrastructure: user

management, access configuration, firewall. To start do:
 root [6] serv->CreateEngine(“fastcgi:9000”);

TBufferJSON class

TBufferJSON converts objects (or selected data

members) into JSON (JavaScript Object Notation) format,

which can be parsed by standard JavaScript methods.

Handling of STL containers is implemented. Produced

data can be directly used with JSROOT.

TBufferJSON allows to keep complex ROOT I/O

completely on the server side. Any custom streamer can

be equipped to work with TBufferJSON - see

TCanvas::Streamer() for practical example.

Data monitoring

In standard interface for THttpServer regular update of

objects drawing will be performed when monitoring flag

is enabled. There is also special “draw.htm” page for

each object, which can be integrated into arbitrary HTML

page using iframe tag:

 <iframe width=“500” height=“400”

 href=“http://localhost:8080/Objects/hpx/

 draw.htm?monitoring=1000”></iframe>

One also can create and regularly update JSON files in

arbitrary ROOT application. Such files can be served by

normal web server and displayed with

JavaScript ROOT like in demo:

 https://root.cern.ch/js/3.4/demo/demo.htm

Simple to use

In many practical cases one just needs to create an

instance of THttpServer:
 root [0] .x $ROOTSYS/tutorials/hsimple.C

 root [1] serv = new THttpServer(“http:8080”);

Objects like histograms or canvases from gROOT

directory will be automatically visible to the server.

At any time one could register objects directly:
 root [2] gr = new TGraph(10);

 root [3] gr->SetName(“gr1”);

 root [4] serv->Register(“/subfolder”,gr);

Read-only (default) mode can be disabled:
 root [5] serv->SetReadOnly(kFALSE);

Several examples are provided in

$ROOTSYS/tutorials/http/ subfolder.

Command interface

One could register commands to the server:
 root [7] serv->RegisterCommand("/Start", "bFillHist=kTRUE;");

 root [8] serv->RegisterCommand("/ResetHPX","/hpx/->Reset();");

Commands appear in the browser hierarchy and can be

executed by the user. One

could use cmd.json

request to invoke

commands from the

shell. Example

can be found in

httpcontrol.C macro.

User interface

Use for go4 analysis

THttpServer is used in go4 framework

(http://go4.gsi.de) to monitor and modify analysis

objects. Drawing and objects editors for custom go4

classes are implemented, one is able to configure and

control analysis remotely via http.

TTree::Draw in the browser

A special UI is provided allowing TTree::Draw() execution on

remote ROOT process via http protocol. One could specify

draw and cut expressions, number of events and see

produced histogram in the

browser. Here exe.json

request is used, which

returns histogram

produced by

TTree::Draw

in JSON format.

go4 GUI as browser

Based on ROOT and Qt, the go4 GUI implements a

generic http client for THttpServer. One benefits from

native ROOT graphics in case of web browser

performance penalties.

CHEP 2015, 13-17 April 2015, Okinawa, Japan, http://chep2015.kek.jp/

{

 "_typename" : "TAttText",

 "fTextAngle" : 0,

 "fTextSize" : 5.0e-02,

 "fTextAlign" : 11,

 "fTextColor" : 1,

 "fTextFont" : 62

}

{

 "_typename" : "TH1F",

 "fUniqueID" : 0,

 "fBits" : 50331656,

 "fName" : "hpx",

 "fTitle" : “This is the px distr

 "fLineColor“ : 602,

 ...

http://bit.ly/1xinYu7

http://bit.ly/1CsPhCm

Snapshot of running httpserver.C macro from tutorials
http://bit.ly/1EHnFXl

http://bit.ly/1yiepGM ROOT

http

(optional)

libfcgi.so

FastCGI server

 Apache

http mod_fastcgi

FastCGI client

http://bit.ly/1BPNouv

http://bit.ly/1FLOHlF

Conclusion

Available in ROOT versions 5 & 6

Provides generic remote user

interface for ROOT applications

Command-line tools can be used

Many possibilities to integrate with

existing ROOT-based applications

Used in Go4 framework

Documentation and demo on

https://root.cern.ch/js/

http://bit.ly/1xk7X6Z

Screenshot of go4 GUI connected to running httpserver.C macro

Snapshot of running httpcontrol.C macro from tutorials

