Frederik.Beaujean@lmu.de
Excellence cluster universe, LMU Munich

CHEP 2015, Okinawa

Given data from LHC, what are likely values of masses, cross sections...?
Limits including systematic uncertainties?
Bayes’ theorem

Learning rule

\[P(\theta|D, M) \propto P(D|\theta, M)P_0(\theta|M) \]

posterior \(\propto \) likelihood \(\times \) prior
Applying Bayes’ theorem

Integration

- **marginalization** \(P(\theta_i|D, M) = \int \prod_{j \neq i} d\theta_j P(\theta|D, M) \)
- **evidence** \(P(D|M) = \int d\theta P(D|\theta, M)P_0(\theta|M) \)
- **quadrature \rightarrow curse of dimensionality**
Applying Bayes’ theorem

Integration

- marginalization \(P(\theta_i|D, M) = \int \prod_{j \neq i} \text{d}\theta_j \ P(\theta|D, M) \)
- evidence \(P(D|M) = \int \text{d}\theta \ P(D|\theta, M)P_0(\theta|M) \)
- quadrature \(\rightarrow\) curse of dimensionality

\(\Rightarrow\) need samples from posterior
Markov chain Monte Carlo

Metropolis Hastings algorithm

- one sample per step
 1. propose move
 2. accept or stay
Markov chain Monte Carlo

Metropolis Hastings algorithm
one sample per step
1. propose move
2. accept or stay

- marginals
- sample near mode \Rightarrow seed for optimization
- uncertainty propagation $f(\theta) \rightarrow P(f|D, M)$
Bayesian Analysis Toolkit

- home page http://mpp.mpg.de/bat
- fork me on [https://github.com/bat/bat/bat](https://github.com/bat/bat)

Motivation

- reinventing the wheel time waster, error prone
- C++ toolkit to supply algorithms/models ⇒ user can focus on problem
Bayesian Analysis Toolkit

- home page http://mpp.mpg.de/bat
- fork me on https://github.com/bat/bat

Features

- implemented: MCMC (multithreaded), simulated annealing . . .
- depends on ROOT: I/O, plots, optimization (Minuit) . . .
- optional: roostats, CUBA (integration)
- docs, tutorials, examples . . . on web page
COMPONENTS

\[P(\theta|D, M) \propto P(D|\theta, M)P_0(\theta|M) \]

USER DEFINED

- create model
- read data
\[P(\theta|D, M) \propto P(D|\theta, M)P_0(\theta|M) \]

USER DEFINED
- create model
- read data

DEFINE

```python
MyModel : BCMModel
- AddParameter("mu", 0, 1)
- LogLikelihood()
- LogAPrioriProbability()
```
\[P(\theta|D, M) \propto P(D|\theta, M)P_0(\theta|M) \]

USER DEFINED
- create model
- read data

COMMON TOOLS
- Normalize()
- FindMode()
- MarginalizeAll()
- PrintAllMarginalized()
- PrintKnowledgeUpdatePlots()

DEFINE
MyModel : **BCMModel**
- AddParameter("mu", 0, 1)
- LogLikelihood()
- LogAPrioriProbability()
// define the model
BCMTF m("SingleChannelMTF");
 m.AddChannel("channel1");
 m.SetData("channel1", hist_data);
 m.AddProcess("background", 200., 400.);
 m.SetTemplate("channel1", "background",
 1.0);
 m.SetPriorGauss("background", 300., 10.);
 m.SetPriorConstant("signal");
// run MCMC, find mode, then plot
m.MarginalizeAll();
m.FindMode(m.GetBestFitParameters());
m.PrintKnowledgeUpdatePlots("upd.pdf");
m.PrintCorrelationPlot("corr.pdf");
ATLAS: Z’

CMS: quantum black hole
arXiv:1501.04198v2

Belle: dark photon
arXiv:1502.00084

UTFIT: D meson mixing
arXiv:1402.1664

110 citations @inspire, ~ 100 downloads of v0.9.4.1 since Jan 20, 2015
<table>
<thead>
<tr>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>• first release 2008</td>
</tr>
<tr>
<td>• subversion</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• one of two main developers left physics</td>
</tr>
</tbody>
</table>

Frederik Beaujean

Apr 2015

11 / 14
Lessons in Software Engineering

History
- first release 2008
- subversion
- one of two main developers left physics

Present
1. better code with git: distributed, code review
Lessons in Software Engineering

History
- first release 2008
- subversion
- one of two main developers left physics

Present
1. better code with git: distributed, **code review**
2. benefit from github: discuss issues, fork, **pull requests**...
Lessons in Software Engineering

History
- first release 2008
- subversion
- one of two main developers left physics

Present
1. better code with git: distributed, code review
2. benefit from github: discuss issues, fork, pull requests...
3. write unit tests: refactor code, add features w/o worrying, automatic tests on different platforms

⇒ time investments pay off
Improvements Under Development

- **Ease of use**: streamline option setting, building ...
- Factorized priors $P(\theta|M) = \prod_i P(\theta_i|M)$
 - \Rightarrow community extensible
- Sharing samples as ROOT files (even w/o the model)
 - \Rightarrow uncertainty propagation, replotting
- Multivariate proposal \Rightarrow big speed-up in high dimensions
- Evidence from MCMC \[arXiv:1410.7149\]
 - \Rightarrow release in summer 2015
Wishlist for the future

- threads + MPI for tough problems ⇒ rewrite
- interface to script languages: python, mathematica, R ...
- sampling algorithms: MCMC, Hamiltonian MC, nested sampling, variational Bayes + importance sampling ...
1. Bayes: random numbers
2. BAT well established
3. more powerful sampling algorithms in BAT 2.0