
On behalf of the CMS Collaboration
Marco Rovere, CERN

CHEP 2015 – “Evolution of Software and Computing for Experiments”
Okinawa, Japan, April 13-17 2015

The Data Quality Monitoring Software
for the CMS experiment at the LHC

DQM is Everywhere

2

Preview

§  Online DQM

§  Offline DQM

§  Generic Tools & Beyond Run2

§  further developments and possible improvements

3

Online DQM

Challenges and Solutions

Online DQM during Run I

It’s all about the
Storage Manager Proxy Server

§  Network DAQ to DQM
communication relied on
the Storage Manager
Proxy Server (SMPS):
always served the latest
event available

§  Filtering capabilities
provided by the SMPS

§  HLT histograms merging
provided by SMPS

§  The SMPS disappeared in
the improved DAQ2
design.

5

Taking responsibilities:
give back to DQM what is DQM’s

6

§  Completely file based and
not event driven: receive
all events/LS, should be
processed sequentially

§  No prior filtering applied
§  HLT histograms merging in

DQM hands
§  Better separation of

responsibilities
§  Required deep redesign of

processing logic.

Online DQM during Run II

Requirements
§  Live event monitoring

Solutions
§  Reduce latency by:

•  Automatic file discovery
•  Tunable min. events/lumi
•  Skip to latest lumi/file.

File-based approach &
its challenges

7

§  Reuse of HLT technology to
handle all run transitions

§  N o e x t e r n a l (X D A Q)
process to start/stop DQM
applications.

§  Event selection from within
main framework

§  No prior event selection

§  Dedicated merging utility:
fastHadd (ROOT+ ProtocolBuffer)

§  Fast histogram merging

Merging Utility 10 files 30 files 50 files

ROOT’s hadd 10.8s 48.9s 125s

fastHadd 3.8s 10.2s 17s

Offline DQM

Challenges and Solutions

Multi-threading in the CMS
reconstruction framework (CMSSW)

What is it? Ability to process many
events in different
threads.

Where is it?

Why affects DQM?

At the root’s of CMSSW,
affects everything.

DQM uses a shared
memory pool for holding
ROOT histograms.

ROOT histograms.

9

Multithreading in DQM
Basic Concepts

§  Serialize access to shared resources/data

§  Enforce policy via an interface

§  Localize resources/histograms to each thread

§  Aggregate histograms at the end of data processing

§  Hide complexity to end-users

§  Avoid a full rewrite of the existing DQM Framework

§  Prevent users from doing mistakes.

10

Transition to Multithreading in numbers

11

•  Design of core components: ~6 man/months

•  So far ~90% of the DQM and VALIDATION code has been
migrated

•  It involved 400+ classes and related helper ones

•  Several months(12+) of work

•  The threaded DQM version is regularly exercised in the
THREADED Integration Build (run twice per day)

•  Comparison of single and multithreaded version are identical

•  Performance numbers in Chris Jones’ talk [Track2 – 14/4/15 15:00]:

•  5-15% loss in CPU usage

•  Factor of 3-4 in Memory reduction

•  Mostly not coming from DQM

Miscellanea and beyond Run2

Further Developments

•  Data and Monte Carlo agreement key ingredient for many
analysis

•  Embed this functionality into the DQM Framework

•  DQMGUI has been constantly improved

•  ROOT6 compatible

•  New APIs to fully expose all its content

•  Automatic histogram stacking

•  Improved performance

13

Conclusions

14

Conclusions

•  DQM framework proved to be extremely flexible and
stable

•  DQM is used everywhere in CMS

•  DQM Framework adapted and improved in the face of
fundamental changes in the Online (DAQ2) and Offline
(Multithreading) environments

•  The central DQM Tools have been constantly improved
during Long Shutdown 1.

•  The new DQM design and implementation proved to be
extremely effective since the beginning of the
commissioning period in 2015.

15

BACKUP SLIDES

16

DQM in CMS: Core Components

17

•  DQMStore: shared
container that holds all
Monitoring Information.

•  MonitorElement:
•  ROOT objects
•  Quality Information
•  Folder hierarchy
•  Flags

•  DQMNet: layer to ship
monitoring information
over network.

•  DQMService: ties
DQMStore and DQMNet
together.

MuliThreaded DQM

18

DQM GUI
A central component of the data quality monitoring system of the CMS Experiment
is a web site for browsing data quality histograms. It guarantees authenticated
Worldwide access. It is a single customizable application capable of delivering
visualization for all the DQM needs in all of CMS, for all subsystems, for live data
taking as much as archives and offline workflows.

19

DQM GUI Architecture: C++, CherryPy, JS

20

Render Plugins

DQM GUI Developments during LS:
APIs
The DQM GUI is capable of exposing its index via many APIs

21

1"ms"

10"ms"

100"ms"

1,000"ms"

10,000"ms"

100,000"ms"

1,000,000"ms"

10,000,000"ms"

Jun'11" Jul'11" Aug'11" Sep'11" Oct'11" Nov'11" Dec'11" Jan'12" Feb'12" Mar'12" Apr'12" May'12" Jun'12" Jul'12" Aug'12" Sep'12" Oct'12" Nov'12" Dec'12" Jan'13"

HTTP Response Time – Daily Average - Offline Server!
HTTP" Plots" JSON_API" JSON_SAMPLES" DATA_BROWSE" DATA_PUT" StripChart"

Performance Plot of DQM GUI

22

1"

10"

100"

1,000"

10,000"

100,000"

1,000,000"

10,000,000"

Nov'11" Dec'11" Jan'12" Feb'12" Mar'12" Apr'12" May'12" Jun'12" Jul'12" Aug'12" Sep'12" Oct'12" Nov'12" Dec'12" Jan'13"

HTTP Requests Served Per Day - Online Server Offsite!
HTTP" Plots" JSON_API" JSON_SAMPLES" DATA_BROWSE" DATA_PUT" StripChart"

DQM (GUI) in numbers

Show some interesting statistics:

ü O(15K) lines of C++ code (web server accelerator, render
engine, index manipulation), O(5K) python lines and O(4K)
javascript lines.

23

Quantity Offline Server RelVal Server Online Server

SAMPLES 264.383 31.587 16.042

SOURCE FILES 303.580 31.744 387.298

DATASETS 2.068 18.379 1

CMSSW VERSIONS -- 90 --

UNIQUE OBJECTS (MEs) 913.174 1.649.086 346.448

STREAMERS 1 1 2

DISK SPACE (TB) 2.5 0.38 0.06

Data vs Monte Carlo
automatic tools
•  Data and Monte Carlo agreement key ingredient for many

analysis
•  Embed this functionality into the DQM Framework

•  Properly combined many MC samples
•  event weight applied separately for each MC sample
•  The scaling factor is the cross section taken as a

parameter from the configuration. The number of
produced events is taken from an existing ME

•  Datasets are summed in a final, cumulative, sample
•  DQMGUI has the capability to properly stack histograms

from different sample.

24

DQM in CMS: Requirements

ü  DQM should aggregate event level information that is sensitive to both detector and
software (HLT) problems in one central place (web server).

ü  Fast turn-around and small latency. Update of info frequently during runs. Quality tests
up to every lumi-section.

ü  Automatic alarms should notify about problems.

ü  Synoptic overview of detector status (front page).

ü  Shift level histograms.

ü  Expert histograms.

ü  The DQM information is key input to the creation of the good run list (aka JSON).

ü  The web server should be accessible everywhere, not just inside P5.

ü  DQM should be maintainable in a modular way by subsystems with fast updates outside
regular release cycles.

ü  DQM needs to run in spy mode, in order to not interfere with the data taking.

25

DQM Offline

26

Prompt Reconstruction, Calibrations, re-
reconstruction, simulation and release
validation all use the same processing
model.

Histograms(ME) created in jobs, saved in
normal data files, harvested periodically and
merged into full statistics with DAQ, DCS info
and finally tested for quality and summarised.

Resulting histograms are uploaded to the GUI
web server hosted at CERN, backed up to
CASTOR/EOS.

Final quality summary flags are stored into
condition database for certification.

Differences are in content and timing. Tier-0,
Tier-1s re-determine detector status using full
event statistics, full reconstruction, plus add
monitoring for physics objects; Tier-0 ∆t ~ 48h,
Tier-1s days+. CAF ∆t hours to days on Al-Ca
entities. Validation verifies MC data.

CMSSW Multi-{Core,Thread}

Global

ü  Sees transitions on a ‘global’ scale

ü  see begin of Run and begin of Lumi when source first reads them
ü  sees end of Run and end of Lumi once all processing has finished for them

ü  Multiple transitions can be running concurrently
ü  two or more begin or end Runs (for different runs)
ü  two or more begin or end Lumis
ü  and end can be occurring while another begin is running

Events are not seen ‘globally’

Stream

ü  Processes transitions serially: begin run, begin lumi, events, end lumi, end run.

ü  Multiple streams can be running concurrently each with own events.

27

DQM in CMS: Subsystem-specific modules

28

ü  Each module, in turn, sees a fixed sequence of events raised by the framework.
ü  Each module books the MonitorElements into the central DQMStore and receives back

pointers to the newly created MEs.
ü  Events are serially processed and the MonitorElements are properly filled.
ü  At every End{Lumi,Run}, the corresponding MonitorElements are permanently written

on disk.
ü  In the case in which the DQMNet is available, all modified MonitorElements will push

their changes to the other side of the network channel (GUI’s collector).
ü  The harvesting step is similar in concept, but will only see Run and Lumi transitions and

will only have access to MonitorElements, not to the events.
ü  Quality tests are run in the harvesting in the end* transitions, depending on their

configuration.

DQMStore THn* THn* THn* THn*

Book histogram
Fill histogram
Write histogram

THn* Run-based histogram

THn* Lumi-based histogram

cmsRun
Begin
Run

Begin
Lumi

Event
1

Event
2

Event
...

End
Lumi

Begin
Lumi

Event
N+1

Even
N+...

Event
N+M

End
Lumi

Event
N+M+1

End
Run

End
Job

End
Lumi

Begin
Job

Begin
Lumi

Event
K

