
Detector Simulation on Modern Processors 
Vectorization of Physics Models 

Philippe Canal, Soon Yung Jun (FNAL)  

John Apostolakis, Mihaly Novak, Sandro Wenzel (CERN) 

for the GeantV team 

 

CHEP, Apr 13 - 17, 2015, Okinawa, Japan 



Contents 

• Introduction 

• GeantV 

• Vector Physics Model 

• Validation and Performance 

• Conclusion 

 

 

Ph. Canal, CHEP2015 2 



Introduction 

 

• Motivations 

– Performance of our code scales  

with clock cycle 

– HEP code needs to exploit  

new architectures to improve 

– Data & instruction locality  

and vectorisation 

– Portability, better physics  

and optimization will be the targets 
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Introduction 

 

• GeantV Goals 

– Develop an all-particle transport simulation program 

• 2 to 5 times faster than Geant4  

• Continues improvement of physics  

• Full simulation and various options for fast simulation  

• Portable on different architectures, including accelerators (GPUs 

and Xeon Phi’s)  

– Understand the limiting factors for 10x improvement  
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See The GeantV project: preparing the future of simulation  
on 14 Apr 2015 at 17:15  

https://indico.cern.ch/event/304944/session/2/contribution/531
https://indico.cern.ch/event/304944/session/2/contribution/531


GeantV: The next generation detector simulation toolkits 

• The GeantV framework: scheduling, geometry, physics 
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WORK QUEUE 

TO SCHEDULER 



Vector Physics Model 

• Assumption: particles are independent during tracking  

• Vectorization of the density of collisions, ψ 

 

 

 

 

 

 

• Vector strategies: data locality and instruction throughput 

– decomposition sequential tracking and regroup them by tasks 

– algorithmic vectorization and parallel data patterns  

– targeting both external and internal (SIMD) vectorization 
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Portability (Template Approach): Scalar, Vector, CUDA, MIC 
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Prerequisites to Achieve Efficient Vectorization 

• Vectorized pseudo-random number generator 

• Data layout: coalesced memory access on vector operands 

– SoA (struct of array) tracks parameters (x,p,t,E …) 

– ordered and aligned data arrays 

• Data locality for the vector of particles 

– particle type, geometry and material, physics process 

• Vector operations 

– identical instructions on each components of the vector 

– no conditional branches,  no data dependencies 

– replace non-vectorizable algorithms (ex. composition and 

rejection methods) by alternatives  
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Sampling Secondary Particles: Alias Method (A.J.Walker) 

• Recast a cross section, f(x) to N 

equal probable events, each 

with likelihood c = 1/N 

• Alias table 

– a[recipient] = donor 

– q[N] = non-alias probability 

• Sampling xj : random u1, u2 

– bin index: N x u1 = i + a 

– sample j = (q [i] < u2) ? i : a[i]   

– xj = [a j + (1-a) (j+1)]dx 

• Replace composition and 

rejection methods (conditional 

branches – not vectorizable)  
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Coalesced Memory Access 

• Sampling the step length and the physics process 

– cross section calculation on-the-fly (fully vectorizable, likely expensive) 

– tabulated physics (table-lookups, bandwidth limited) 

• Gather data to enable contiguously ordered accesses 

– loss by overhead < gain by vectorization 
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Validation: Alias vs. Composition and Rejection Method 

• Compton (Klein-Nishina model): energy and angle of 

scattered photons  
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Vector Speedup: Factor 2 on Xeon 
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Runtime Performance 

• Relative performance for sampling the secondary electron 

– Composition Method, Scalar, Vector 

– average time for 100 trials for 4992x100 tracks – SSE 

– Table size [input energy bins, sample energy bins]  

 

 

 

 

 

 

• Note that Composition Method Klein-Nishina model is one of 

the most efficient composition and rejection examples (ε~1)   
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Table size Time with [100,100]  Time with [100,1000] 

Composition Method 11.609 11.347 

Alias Method, Scalar 8.439 10.080 

Alias Method, Vector 5.446 6.185 



Status and Plan 

• Implement one fully vectorized EM physics model (Klein 

Nishina Compton) and test with GeantV 

– Backend: Scalar, Vector, CUDA 

– Performance evaluation and validation  

• Complete all EM physics by Dec. 2015 

 

 

 

 

 

 

• Extend for hadron physics and explore other algorithms 
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Conclusion 

 

• Significant performance improvement achievable in detector 

simulation physics code using a combination of: 

– Alternative algorithm (reducing branching, etc.) 

– Vectorization 

– Increased use of code and data caches 

 

• Using template techniques, code is portable to different 

modern computing architectures while still being tuned for 

each architecture. 
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