
Breaking the Silos:  
The art Documentation Suite"
Rob Kutschke Fermilab Scientific Computing Division!
CHEP 2015, April 16, 2015!
!
Presented by: Chris Jones, Fermilab Scientific Computing Division!
!

CS-‐Doc-‐5545-‐v3	

Introduction"

•  art: event processing framework used as an external product!
–  In the same sense as ROOT, Geant4, CLHEP …!
–  Mu2e, Muon g-2, NOvA, DarkSide50, MicroBoone, DUNE …!
–  https://web.fnal.gov/project/ArtDoc/Pages/home.aspx!
–  https://cdcvs.fnal.gov/redmine/projects/art/wiki!

•  A pressing need for integrated art documentation!
–  Details for intermediates and experts!
–  Onboarding materials for beginners!

•  Self paced, self study (people start asynchronously)!
•  https://web.fnal.gov/project/ArtDoc/SitePages/documentation.aspx!

–  Reference manual!
–  Useful for all experiments using art!
–  Built around exercises that “just work”!
!

4/16/15!Kutschke / art Documentation Suite"2!

Prerequisites and Co-requisites"
•  Prerequisites!

–  Things we really can assume a user knows!
–  Examples: elementary procedural programming, pointers.!

•  Co-requisites!
–  Things that we need to discuss as they are encountered:!

•  Some C++ features, Standard Library, ROOT, CLHEP, steps in
building code, build system, git, unix environment, bash!

•  What’s an event? What’s an event loop? What editor can I use?!
–  Introduce it; give it a name so that people can look it up.!
–  Describe what is needed for the task at hand.!
–  Would prefer these to be prerequisites but it’s not practical.!

•  Product documentation often presumes significant prerequisites!
•  Or it is not organized to suit our needs!
•  It is siloed: each package is usually discussed in isolation.!

4/16/15!Kutschke / art Documentation Suite"3!

Experience with Mu2e"

•  People who have experience on another experiment that
uses modern HEP software learn Mu2e software rapidly!
–  Mostly need to learn new syntax for well understood ideas!

•  People without this experience are often overwhelmed:!
–  Very often the roadblock is in a prerequisite or a co-requisite!

•  Many advanced features are used on day 1!!
–  No existing way to learn the co-requisites in a reasonable

amount of time.!
–  One way to solve this is to integrate discussion of co-requisites

into the onboarding materials.!
•  Very often senior people can mentor junior people in

everything EXCEPT computing.!
–  20 years ago they could do that too!

4/16/15!Kutschke / art Documentation Suite"4!

Main Elements of the Documentation Suite"

•  Introduction!
–  Outline of the documentation suite; survey of prerequisites.!

•  Workbook!
–  Onboarding for beginners; canned examples for others.!
–  Co-requisites described as needed.!
–  Self paced, self study exercises; must “just work”.!

•  Users Guide!
–  Targeted at intermediates and experts; the “mother lode”.!

•  Technical Manual!
–  Targeted at art maintainers and developers!

•  Reference Manual!
–  LXR, Doxygen or similar!

•  Table of Contents, Index, Glossary!

4/16/15!Kutschke / art Documentation Suite"5!

Everything	 	 	
cross-‐referenced	

Status"

•  Introduction ~90% complete 120 PDF pages!
•  Workbook ~25% complete 260 PDF pages!

–  Guess ~800 pages at completion!
•  User’s Guide ~5% complete!

–  Existing content is vacuumed up from experiments that use art.!
–  Not vetted; not edited.!
–  Designed as a reference, not as something you read from start

to finish. Total size at completion O(1000) pages?!
•  LXR and git browsers available now.!
•  Other elements: not yet started!

4/16/15!Kutschke / art Documentation Suite"6!

The art Workbook"

•  A sequence of exercises!
–  Must “just work”!
–  With explanatory text!

•  Discuss co-requisites as they are encountered!
–  Read; build; run; study the output; exercises plus solutions!
–  Some exercises are to modify or extend behaviour!
–  Some exercises are to understand and fix errors.!

•  Most of the early exercises are designed to be sequential.!
–  Some later exercises are standalone.!

•  Exercises are built around a greatly simplified toy detector!
–  Massless central tracker in a uniform solenoidal field!
–  (We have a request to replace this with a simplified LAr TPC)!

•  Plan ~30 exercises; 8 available now.!
4/16/15!Kutschke / art Documentation Suite"7!

The Biggest Lesson Learned"

•  First version of Exercise1: !
–  Hits in the toy detector are represented by the class toy::Hit.!
–  Get a collection of hits from the event!
–  Print the event ID and the number of hits per event!
–  Fill a histogram with the ADC value of each hit!
–  No documentation of co-requisites at that time!

•  This crushed many people!
–  It took days for many beginners to work through.!
–  In almost all cases the stumbling blocks were:!

•  Finding documentation for co-requisites!
•  Missing cross-references to material previously discussed.!

•  In the end Exercise 1 was split into 8 exercises !
–  Details in backup slides!

4/16/15!Kutschke / art Documentation Suite"8!

Technology"

•  Code!
–  Versioned; distributed as a readonly git repository!

•  External products!
–  Versioned; available as a tarball for SL and OSX.!
–  Installed on most Fermilab machines and on many machines at

home institutions of art based experiments.!
•  Written material:!

–  Versioned; matched to the code and external products.!
–  LaTeX source managed by git; distributed as PDF.!
–  Hyperlinked internal and external references!

•  Modern PDF browsers highlight links and have a back button.!
–  Will add other output formats if the tools are available.!

4/16/15!Kutschke / art Documentation Suite"9!

Feedback From Users"

•  They like it a lot and want it finished.!
•  2 to 4 days to skim the Introduction and work through the first

8 workbook exercises !
–  Depends on which prerequisites and co-requisistes a user

already knows and whether they try every exercise in detail.!
•  Many people are intimidated by ~400 pages!

–  But it reads quickly: lots of source and output listings;
instructions are repeated so that you do not need to flip around.!

–  We need buy in from the senior people that a few days or even
a few weeks is a valuable investment of their people’s time.!

–  We have buy in from some but others are looking for a unicorn.!
•  Guess: when the workbook is complete it will take 5 to 15

days to work through it in detail.!

4/16/15!Kutschke / art Documentation Suite"10!

Timing and Staffing"

•  The plan is ambitious!
–  Estimate ~2-3 FTE-years for the complete project!
–  So far:!

•  Domain expert effort is 100% volunteer!
•  Integral of ~0.5 FTE-years!

–  Calendar time to complete !
•  ???? the volunteers have day jobs!

–  Fermilab provided a part time technical writer!
•  Outstanding in her role but not a domain expert!

•  Maintenance plan!
–  Not yet developed!
–  Expect that all exercises will be run as part of the test suite to

certify a new version of art. Need to automate verification.!

4/16/15!Kutschke / art Documentation Suite"11!

Meta-Questions"
•  Most people in HEP do NOT need to be computing experts.!

–  What is the baseline skill set that most people should have?!
–  What fraction of the community should be able to run jobs for

their experiments?!
–  What fraction of the community should be able write analysis

modules for their experiment?!
–  What fraction of the community should have the computing

skills to contribute to algorithm development?!
–  Is doing TTree analysis all that most people should need?!

•  HEP community has no answers to these questions.!
–  The answers to these will inform the training materials we need

to develop!
–  Effort won’t be assigned to training materials unless the

community demands it. !
4/16/15!Kutschke / art Documentation Suite"12!

Summary"

•  We have a plan for an integrated art documentation suite!
–  Still a mostly volunteer effort; new volunteers welcome.!

•  Critical features!
–  Usable by all experiments that use art!
–  Integrated treatment of co-requisites!
–  Cross-referenced; Table of Contents; Index; Glossary!

•  Would like, with permission, to link to or incorporate material
describing prerequisites or co-requisites. Suggestions?!

•  For more information:!
–  https://web.fnal.gov/project/ArtDoc/Pages/home.aspx!
–  https://cdcvs.fnal.gov/redmine/projects/art/wiki!
–  https://web.fnal.gov/project/ArtDoc/SitePages/

documentation.aspx!
4/16/15!Kutschke / art Documentation Suite"13!

Backup Slides"

4/16/15!Kutschke / art Documentation Suite"14!

The class toy::Hit"

4/16/15!Kutschke / art Documentation Suite"15!

namespace toy {!
!
 // C’tor and other members elided for clarity!
!
 class Hit {!
 public:!
 float adc() const { return _adc;}!
!
 private:!
 float _adc; // ADC counts!
 !
 };!
!
 typedef std::vector<Hit> HitCollection;!
!
}!

A Simple Module (1)"

4/16/15!Kutschke / art Documentation Suite"16!

// Get the hits from the event and histogram the ADC value.!
namespace toy{!
!
 class ADCPlotter : public art::EDAnalyzer {!
!
 public:!
 explicit ADCPlotter(fhicl::ParameterSet const& pset);!
!
 void beginJob() override;!
 void analyze(art::Event const& event) override;!
!
 private:!
 art::InputTag _hitsTag;!
 TH1D* _hADC = nullptr;!
!
 };!
}!
DEFINE_ART_MODULE(toy::ADCPlotter);!

A Simple Module (2)"

4/16/15!Kutschke / art Documentation Suite"17!

!
// Get the input tag from the run-time configuration!
toy::ADCPlotter::ADCPlotter(fhicl::ParameterSet const& pset):!
 _hitsTag(pset.get<std::string>(“inputTag”))!
{}!
!
!
// Book the histogram!
void toy::ADCPlotter::beginJob(){!
!
 art::ServiceHandle<TFileService> tfs;!
 _hADC = tfs->make<TH1F>(“hADC”, “ADC for Hits”, 32, 0, 32);!
!
}!
!

A Simple Module (3)"

4/16/15!Kutschke / art Documentation Suite"18!

!
// Fill the histogram.!
void toy::ADCPlotter::analyze(const art::Event & event){!
!
 auto hits = !
 event.getValidHandle<toy::HitCollection>(_inputTag);!
!
 std::cout << “Event: “ << event.id()!

!<< “ has “ << hits->size() << “ hits.” << std::endl;!
!
 for (auto const& hit : *hits){!
 _hADC->Fill(hit.adc());!
 }!
!
}!

Ideas encountered in this example"

•  Basic framework ideas: !
–  plugin-able modules, the run-time configuration system

(parameter sets), services, data products, input tags !
•  art::Event, art::EventID!
•  The experiment specific classes: !

–  toy::Hit, toy::HitCollection!
•  ROOT basics, including TH1D!
•  TFileService!
•  fhicl::ParameterSet, an image of the run-time configuration!
•  art::InputTag!
•  art::ValidHandle<T>!
•  DEFINE_ART_MODULE!

4/16/15!Kutschke / art Documentation Suite"19!

Ideas glossed over on page 19:"

•  We have implicitly assumed that people already understand!
–  What’s an event? A run? A subrun?!
–  What is the event loop?!

•  Intermediate level C++ language skills!
–  Minimal knowledge of: classes, inheritance, templates!
–  namespaces!
–  std:vector<T>!
–  typedef!
–  Writing loops!
–  Pointers, references, handles!

•  A module inherits from a base class. !
–  You must override the analyze function!
–  You may override some other member functions!

4/16/15!Kutschke / art Documentation Suite"20!

Ideas glossed over on page 19:"

•  DEFINE_ART_MODULE is a directive C-Preprocessor!
–  What’s a C-Preprocessor!

•  auto is very, very confusing to beginners.!
•  What’s a build system? What does it do? What’s a link list?!
•  How to use git, which is used to distribute the example code.!

4/16/15!Kutschke / art Documentation Suite"21!

Our Experience"

•  If you skip any of the material on the last two pages many
beginners are completely confused.!

•  This example took days for beginners to get through !

4/16/15!Kutschke / art Documentation Suite"22!

Exercise 1 turned into 8 Exercises!"

•  Exercise 1: Running an art job!
•  Exercise 2: Building and Running your First Module!

–  Only the analyze member function!
•  Exercise 3: Some other Member Functions of a Module!

–  Begin/End Run/SubRun/Job!
•  Exercise 4: A First Look at Parameter Sets!
•  Exercise 5: Making Multiple Instances of One Module!
•  Exercise 6: Accessing Data Products!
•  Exercise 7: Making a Histogram!
•  Exercise 8: Looping over Collections!

4/16/15!Kutschke / art Documentation Suite"23!

Prerequisites and Co-requisites"
•  Prerequisites!

–  Things we assume a user knows!
–  Examples: elementary procedural programming, pointers.!

•  Co-requisites!
–  Things that we need to discuss as they are encountered in our

exposition of art!
•  Introduce it; give it a name so that people can look it up.!
•  Describe what is needed for the task at hand.!
•  Do this once and reference to it from other places.!
•  Often this drives us to split an exercise into 2 or 3 parts so that the

earlier part(s) can discuss the co-requisites. The last part has the
art content.!

–  Many co-requisites we would prefer to assign as prerequisites
but experience teaches we cannot.!

4/16/15!Kutschke / art Documentation Suite"24!

The Plan for the Documentation Suite"

4/16/15!Kutschke / art Documentation Suite"25!

Status"

4/16/15!Kutschke / art Documentation Suite"26!

25%	 Complete	

90%	 Complete	

5%	 Complete	

