Cellular Automaton based Track Finding for the Central Drift Chamber of Belle II.

OIST, Okinawa - CHEP 2015

Oliver Frost on behalf of the Belle II collaboration Deutsches Elektronen-Synchrotron (DESY) 2015-04-13

> Belle II and the Central Drift Chamber

> Weighted Cellular Automaton

Concrete Application

SuperKEKB und Belle II

Experimental agenda

- > B-Factory : Asymmetrical e⁺e⁻-Collider mainly running on the Y(4S)-Resonance
- > Search for new physics by precision measurements
- > 50 ab⁻¹ from 2018 until 2025
- Exceed the world record luminosity by a factor of 40.

Tracking at Belle II

Tracking detector components

- Silicon pixel detector (PXD)
- Silicon strip detector (SVD)
- Central drift chamber (CDC)

Offline tracking reconstruction

- 1. Standalone finder for PXD + SVD
 - Cellular automaton / Hopfield-Network finder
- Standalone finder for the CDC
 - Legendre finder for high momentum tracks
 - Weighted cellular automaton finder for lower momentum range, decays in flight and comics tracks
- Merging of silicon and drift chamber tracks
- Cross detector searches and extrapolations for additional hits
- Final track fit with GENFIT Kalman filter or DAF from seed delivered by the finders

Central Drift Chamber

Structure and detection principle

- > 14336 drift cells with sense wires in hexagonal near ordering
- > Gas mixture $He C_2H_6$ with $v_{drift} = 0.04 \frac{\text{mm}}{\text{ns}}$
- > Two drift times / radii per wire
- 56 concentric layers in 9 super layers alternating

axial parallel to the beam line

stereo slightly twisted enabling reconstruction into the third dimension (see below)

Small cells SL 0

Stereo layers - twist exaggerated for illustration

Regular cells SL 1 - 8

Track finding in the Central Drift Chamber. Turn unmarked hits

...into groups caused by the same particle.

Classical cellular automaton

Introduced at DESY

Discrete form of (Denby-Patterson-)Hopfield-Network in CATS (Cellular Automaton for tracking in Silicon) by Kisel for HERA-B

Graph diagram

- Loop-free directed graph assuming a forward direction
- Vertices / cells represent suspected positions
- Edges / neighbors represent suspected propagations
- Evaluation rule designed for non-floating point hardware

$$E_i = \max_{\mathsf{neighbor}\, j} (E_j + 1) = \sum_{\mathsf{best}\, \mathsf{path}\, \mathsf{to}\, i} 1$$

Weighted cellular automaton

Approximate the Hopfield-Network more closely

- \rightarrow Allowing weights on vertices θ_i and edges w_{ij}
- > Weighted evaluation rule picking the neighbor with highest weight gain

$$E_i = heta_i + \max_{\mathsf{neighbor}\, j} (w_{ij} + E_j) = \sum_{\mathsf{best}\, \mathsf{path}\, \mathsf{to}\, i} w_{ij} + \sum_{\mathsf{best}\, \mathsf{path}\, \mathsf{to}\, i} heta_i$$

Inherited properties

- \rightarrow High evaluation speed by single pass over the graph (forward pass, O(n) algorithm)
- Generation of valuable tracks following cells with highest state (backward pass)
- Iteration for additional disconnected tracks
- Emphasis on local connections robustness against separated background and energy loss
- Agnostic to start position and direction of flight seeding phase unnecessary

Upgraded properties

Refined track model by encoding probability of positions and propagations into the weights

Comparison to Hopfield-Network

Hopfield-Network

> Symmetrical graph

> Minimized energy function

$$E = -\frac{1}{2} \sum_{i,j} w_{ij} \cdot s_i \cdot s_j - \sum_i \theta_i \cdot s_i$$

Weighted cellular automaton

Directed loop free graph

Maximized energy function

$$E_{i, ext{highest}} = \sum_{ ext{best path to } i} ext{w}_{ij} + \sum_{ ext{best path to } i} ext{ heta}_i$$

Quality of the approximation

Weighted cellular automaton optimizes the same energy function as the Hopfield-Network assuming

- The symmetry of the graph can be broken to a forward direction (as it is applicable in tracking applications).
- The activation of the Hopfield-Cells is $s_i = 1$ on the sought track and $s_i = 0$ elsewhere.

Two weighted cellular automata at different level of detail

Build segments from individual hits in each super layer

Build tracks from segments

Segment building stage - components of the graph

Vertices - θ_i

- Ordered triple of close by hits triangulating the suspected position
- Assumed right left passage hypotheses for unique trajectory
- Linear trajectory by least square method

Edges - wij

- Neighboring triplets share two hits
- Loose feasibility cuts
- > Judging compatibility by combined χ^2 of the trajectories

Track building stage - components of the graph

- ➤ Ordered pairs of segments axial ↔ stereo
- Least square circle fit by Riemann technique (Frühwirth et al.) + linear fit of reconstructed z-coordinates over travel distance s
- → full helix trajectory with uncertainties

Edges - wij

- Neighboring segment pairs share one segment
- Loose feasibility cuts
- Judging compatibility by combined χ² of the trajectories

Conclusion

Algorithm

- Bottom-up track finding in two stage utilizing a graph of suspected positions and transitions
- Generation of long paths with the generalization of the classic cellular automaton with weights

- Detailed modeling of the physical particle movement can be encoded by the weights.
- Automatic filtering of beam backgrounds
- Low susceptibility against energy loss along the track

Outlook

- Best weighting model under investigation
- First application to the data from cosmic data taking starting this spring