

Energy reconstruction study in a Semi-Digital Hadronic Calorimeter for ILC CHEP 2015 - Computing in High Energy and Nuclear Physics

Sameh Mannai

Université Catholique de Louvain

CHEP April 13-17 2015

A D > A B > A

Outline

Introduction

- Motivation
- The Semi Digital Hadronic Calorimeter prototype

2 Beam Tests campaigns at Cern

- Tests beam summary
- SDHCAL Performance
- Event Selection

Hadronic energy reconstruction techniques in SDHCAL

- Energy reconstruction: Quadratic Parametrisation
- Energy reconstruction: Artificial Neural Network

4 Conclusion

- ILC should be equiped with high precision detectors
- Excellent Jet energy Resolution $3\%/E_{jet}$ $\sigma_{jet} = \sqrt{\sigma_{Track}^2 + \sigma_{Had}^2 + \sigma_{elm}^2 + \sigma_{confusion}^2}$
- PFA: Construction of individual particles and estimation of their energy/momentum in the most appropriate sub-detector

Construction of Highly Granular Calorimeters to separate overlapping showers W, Z separation in the ILD Concept

500 1000 1500 2000

• DHCAL: Binary readout 1-bit readout electronics (1 threshold) Lateral segmentation of 1 cm2

- Analog HCAL readout directly by SiPM and embedded electronics
- SDHCAL: 2-bit electronics (3 thresholds) Lateral segmentation of 1 cm2

Image: A math a math

SDHCAL prototype technology

- Sampling calorimeter
- Size: 48 stainless steel plates + 48 active layers $\implies 1 \times 1 \times 1.3m^3$
- Active layer
 - Gaseous detector: GRPC (Glass Resistive Plate Chamber) of $1m^2$
 - Gas mixture: tetrafluoroethane(TFE, 93%), isobutane (5%) and ${\rm SF}_6$ (2%)
 - HV: $\sim 6.9 kV$ in avalanche mode
- Readout
 - 96 \times 96 pads of 1*cm*² per layer \iff more than 460000 chanels for the whole prototype
 - Semi-digital readout: 3 thresholds on the induced charge to have a better idea on the deposited energy
- Absorber:48 \times 20mm stainless steel $\iff \sim 6\lambda$

- A technological prototype was built with a self-supporting mechanical structure, fulfilling almost all the ILD requirements
 - compactness
 - homogeneity
 - low power consumption
 - Successfully tested with Triggerless mode and Power pulsing mode

- August-September 2012 on H6 line for 2 weeks
- November 2012 on H2 line for 1 week
- December 2014 on H6 line for 1 weeks
- Large beam size, low particle rate < 1000 particle/spill
- Triggerless acquisition: readout all data recorded
- Power pulsing: idle electronics between 2 beam spills

A D > A B > A

- \bullet Efficiency: probability to find at least 1 hit within 3cm of the reconstructed track in the studied layer. $\bar{\epsilon}\sim96\%$
- $\bullet\,$ Multiplicity: mean number of hits matched on studied layer within 3cm of the impact track $\bar{\mu}\sim 1.7$

< □ > < 同 >

Event selection

- Pions Data are contaminated with muons, cosmics, electrons \implies Event selection
 - Electron rejection: Shower Start > 4
 - Muon rejection: $N_{hit}/N_{layer} > 2.2$
 - Neutral rejection: N_{hit} in the first 5 layers> 4
 - Double incident particles rejection: distance between hits in each of the first 5 layers $\leq 5 cm$

Sameh Mannai (UCL)

- Pions Data are contaminated with muons,cosmics, electrons ⇒ Event selection
 - Electron rejection: Shower Start > 4
 - Muon rejection: $N_{hit}/N_{layer} > 2.2$
 - Neutral rejection: N_{hit} in the first 5 layers> 4
 - Double incident particles rejection: distance between hits in each of the first 5 layers ≤ 5cm

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Energy reconstruction: Quadratic parametrisation

- $E_{\rm rec} = \alpha(N_{\rm tot}) \times N_1 + \beta(N_{\rm tot}) \times N_2 + \gamma(N_{\rm tot}) \times N_3$
- N₁,N₂,N₃: number of hits for thresholds 1,2,3 $N_{\text{tot}} = N_1 + N_2 + N_3$ $\alpha(N_{\text{tot}}) = \alpha_1 + \alpha_2 \times N_{\text{tot}} + \alpha_3 \times N_{\text{tot}}^2$ $\beta(N_{\text{tot}}) = \beta_1 + \beta_2 \times N_{\text{tot}} + \beta_3 \times N_{\text{tot}}^2$ $\gamma(N_{\text{tot}}) = \gamma_1 + \gamma_2 \times N_{\text{tot}} + \gamma_3 \times N_{\text{tot}}^2$
- α, β, γ : quadratic weights of N_{tot} obtained from like χ^2 minimisation:
- $\chi^2 = \sum_{i=1}^{N} \frac{((E_{\text{beam}} (E_{\text{rec}}))^2)}{E_{\text{beam}}}$

3

・ロト ・日下・ ・ ヨト・

Energy resolution results

< □ > < □ > < □</p>

Energy reconstruction in SDHCAL

- TMultiLayerPerceptron of root package.
- 2 hidden layers with 6 and 2 neurons.
- \bullet The input variables: N_1, N_2, N_3 .
- $\bullet~$ The output variable is the reconstructed energy: $E_{\rm rec}$.
- Monte Carlo Simulation
 - Training Samples: Odd energies, 1-99 GeV (50 training samples)
 - Test Samples: Even energies, 10-90 GeV (40 test samples)

Image: A math a math

CHEP April 13-17 2015 14 / 18

ANN results in MonteCarlo Simulation

CHEP April 13-17 2015 15 / 18

- Architecture of the ANN : One hidden layer of 8 neurons.
- \bullet The input variables: $N_1,\!N_2,\!N_3$.
- \bullet The output variable is the reconstructed energy: $E_{\rm rec}$.
- Data SPS H6 2014
 - Training Samples: Trained with Simulation samples(1000 events per energy), Energies:1-50GeV)
 - Test Samples: 2014 test beam data (4500 events per energy): Energies(20,25,30,35,40,45 GeV)

A B > 4
 B > 4
 B

- The SDHCAL prototype is built and successfully tested in tests beam
- Good data quality and stability were observed
- Analytic energy reconstruction method: energy resolution reaches < 6% at $80\,\text{GeV}$ with satisfactory linearity
- ANN technique giving promised results: To be improved
 - Ongoing study: To improve Energy resolution with ANN, more variables added as inputs to ANN is under investigation
 - topologic variables of hadronic shower: shower start, Mean radius shower, Lenght of the shower...
 - Add more energy points: Next test beam at Cern May 2015

Back-up

æ

▲□▶ ▲圖▶ ▲国▶ ▲国▶

Charged particles: 65% precise measurement by Tracker

Photons : 25 % measured by EM calorimiters

```
Neutral hadrons : 10 % measured by HCAL
```

Tracker measure the Energy deposited of **charged particules** then eliminate them of the calorimeters.

Calorimeters are used to measure **Neutral particules** once deposited energy of charged particles eliminated

$$\frac{\sigma_E}{E} = \frac{21}{\sqrt{E/\text{GeV}}} \oplus 0.7 \oplus 0.004E \oplus 2.1 \left(\frac{E}{100 \text{ GeV}}\right)^{0.3} \%$$
Calorimeter Track Leakage
Sameh Manai (UCL)
Energy reconstr

uction in SDHCAL

To distinguish between Z,W \pm jets, the ILD energy resolution should be comparable to the widht of the bosons mass spectrum < $30\%/\sqrt{E}$.

High granular calorimiters allow the minimisation of the confusion term in energy resolution

CHEP April 13-17 2015 18 / 18

< □ > < □ > < □</p>